
0. Welcome to TISC 2022! [TISC{G4m3 0n!}]

I thought it was funny that the username I got was mildly insulting.

1. Slay the Dragon [TISC{L3T5_M33T_4G41N_1N_500_Y34R5_96eef57b46a6db572c08eef5f1924bc3}]

First, I connected to the challenge server just to check out what the game actually did.

We are presented with a rudimentary menu, giving us four options:

1. “Fight boss” takes you to the battle screen, where you can challenge the next boss.

2. “Mine gold” sometimes awards you with 5 gold. Other times, it prints a creeper face and

immediately kills you, terminating the client program.

3. “Go shopping” allows you to buy a sword (which increases your ATK to 3; you can only own

one) or potions (which heal 10 HP on use, and you can hold as many as you want).

4. “Exit” obviously quits the game.

A quick examination of the source code reveals that the server will send us the flag only when all

bosses are slain. So I tried to challenge the bosses in sequence without buying anything. The first boss

was a slime with 5 HP and 1 ATK, which died before I did, but the second boss was a wolf with 30 HP

and 3 ATK, and I died before I could kill it.

I figured that I would need to buy the sword and some potions so that I could live for long enough to

kill the boss. But how could I accumulate enough gold without randomly ending my own run?

My first observation was here, in workevent.py:

It turns out that the logic handling whether or not we die to a random event when attempting to

acquire gold is client-side! As can be seen above, the game has a 20% chance to end the run, and if

this check is passed, it proceeds to send the “WORK” command to the server. We can confirm this by

looking at the server-side code for processing this command (server/service/workservice.py):

Indeed, all the server does is update the amount of gold we have when the relevant command is

received. So I simply set CREEPER_ENCOUNTER_CHANCE = -1 (and commented out the time-wasting

screens.display_working_screen() function call), which allowed me to acquire as much gold as I needed

risk free.

Buying several potions this way, then alternating between attacking and healing allowed me to beat

the second boss. (Note that you could also reach this point by just re-running the client until you got

lucky and managed to acquire at least 10 gold, but that’s no fun.)

Unfortunately…

Potions can’t save us here, because we only have 10HP, so we cannot even tank a single hit! So I

decided to look further into how the battle system logic was processed. Here is a summary of how it

works:

• Client reads user input and converts it into the corresponding command.

• The client simulates the effect of the command as well as a boss attack which always occurs

on the boss’s turn. The client also sends the player’s command over to the server.

• The server logs commands received in the server-side command history. After each logging

operation, it checks whether the player’s most recent action was ATTACK or HEAL, and

appends a BOSS_ATTACK to the command history if so.

• When the boss has been slain on the client-side, it sends a VALIDATE command to the server.

This causes the server to simulate all commands logged in its command history on its end, and

informs the client of the outcome (boss died or player died). If for whatever reason there was

no outcome, meaning that both the player and boss are still alive, the server simply exits

(which causes the client to crash).

Here’s a closer look at some relevant snippets from the server-side validation logic:

server/battleservice.py

core/models/command.py

Note that the server calls log_commands_from_str(), which first splits the received data using

whitespace as a delimiter before attempting to log each one as a command. Only after this does the

server check whether the most recent logged command was ATTACK or HEAL, and append a

BOSS_ATTACK accordingly.

Hence, I added a new command, CHAIN_ATTACK = “ATTACK ”*100. Then I modified the client battle

logic to support this:

In effect, choosing to attack would instead send my new command CHAIN_ATTACK, and choosing to

heal would force the server to immediately VALIDATE its current command history. When the server

receives CHAIN_ATTACK, it splits it according to whitespace, causing it to log 100 separate ATTACKs

from the player before appending a BOSS_ATTACK to its command history. Hence, when it simulates

the outcome of the battle after receiving VALIDATE, the boss will always die to our rapid flurry of

slashes before it manages to hit us once.

Indeed, this worked.

2. Leaky Matrices [TISC{d0N7_R0lL_Ur_0wN_cRyp70_7a25ee4d777cc6e9}]

We observe that in the first phase, where the client challenges the server, we can immediately recover

the value of the secret key by passing challenge vectors 𝑒1,⋯ 𝑒8, where 𝑒𝑖 is the 𝑖-th column of the

8x8 identity matrix. Illustrating this using 𝑒1 as an example:

(

𝑘1,1 𝑘1,2 ⋯ 𝑘1,8
𝑘2,1 𝑘2,2 ⋯ 𝑘2,8
⋮ ⋮ ⋱ ⋮

𝑘8,1 𝑘8,2 ⋯ 𝑘8,8

)(

1
0
⋮
0

) = (

𝑘1,1
𝑘2,1
⋮

𝑘8,1

)

I wrote a simple script to automate this process:

3. PATIENTZERO

Part 1 [TISC{f76635ab}]

Opening the file in a hex editor and googling the first couple of bytes reveals that we are looking at an

NTFS image. I stared at the contents of the boot sector on Wikipedia here

(https://en.wikipedia.org/wiki/NTFS#Structure) but I had no idea what I was looking for, so I proceeded

to try and mount it first.

Googling the error message turned up these two files:

https://opensource.apple.com/source/ntfs/ntfs-91.20.2/newfs/bootsect.c.auto.html

https://opensource.apple.com/source/ntfs/ntfs-91/newfs/layout.h.auto.html

First, I tried looking for the reserved field that wasn’t zero – this was the large_sectors field of the

BIOS_PARAMETER_BLOCK in the NTFS_BOOT_SECTOR structure. This turned out to be “TISC” located

at +0x20; however, TISC{54495343} wasn’t the flag.

Looking a bit further downstream, I noticed that based on the comments in the code, the 4 bytes

following “TISC” were expecting values 0x80, 0x00, 0x80, 0x00. This was further confirmed by the

Wikipedia article. However, these values were not present at the relevant location in the provided file:

As it turns out, this was the flag.

https://en.wikipedia.org/wiki/NTFS#Structure
https://opensource.apple.com/source/ntfs/ntfs-91.20.2/newfs/bootsect.c.auto.html
https://opensource.apple.com/source/ntfs/ntfs-91/newfs/layout.h.auto.html

Part 2 [TISC{f9fc54d767edc937fc24f7827bf91cfe}]

Binwalk reveals two files, broken.pdf and message.png.

broken.pdf contains this:

message.png contains a base32-encoded string which, when decoded, gives the following:

WinHex -> click on message.png -> explore -> $RAND

Hmm…

Reverse image search reveals this is the logo of TrueCrypt. This makes sense in context (“True random

bytes for Cryptology”… a bit of a stretch if you ask me), because the data in $RAND (minus the hints

appended at the front and end) is an exact multiple of 512 bytes, which is characteristic of TrueCrypt

volumes.

I spent a while wondering why I wasn’t able to decrypt the TrueCrypt volume with the CRC-32 of the

original BPB (which I found in the backup boot sector). Then I realised I was supposed to use the flag

of Part 1 as the password instead – this was hinted at by the challenge description, and didn’t have

anything to do with the 4th hint…

Once decrypted, the volume contained the following image:

This suggests the existence of a hidden volume within the volume that was just decrypted.

Furthermore, the blanked out word is probably “collision”.

After half a day trying to convince myself that the solution still lay in the BPB somewhere, I started

grasping at straws. Eventually I decided that the hint could be trying to tell me that

crc32(hidden_volume_password) = f76635ab and the password “looked like” the word “collision”. So

I wrote a small python script to exhaustively try out some simple substitutions for the each letter in

the word:

I wasn’t really expecting this to work, but surprisingly it did:

Providing “c01lis1on” as the password to the TrueCrypt volume allowed me to access the hidden

volume, which contained a PowerPoint slideshow with some music playing:

This is easy, because PowerPoint files are actually archives. So I opened the slideshow in 7zip and

grabbed the audio from ppt/media/media1.mp3. Then I grabbed the MD5 hash of it:

This was not quite the flag, but converting all the letters to lowercase did the trick.

Brief but glorious

Note: most of my complaints about poor hint wording in the challenge were gradually resolved by the

admins after I completed it, but I still disagree with the wording of the “checksum hides many keys”

hint. “Describes the condition of hash collision” makes it seem like the password we are looking for is

a variation of a word related to or meaning hash collision, instead of literally the word “collision” itself.

4A. One Knock Away [TISC{1cmp_c0vert_ch4nnel!}]

We are given an ELF relocatable file. After some googling around (and about a day spent convincing

myself that I had better odds with 4B – I did not, because I know nothing about AWS), I realised it was

a Linux kernel module. However, it did not load on my usual VM.

Checking the vermagic in the file revealed that the kernel module was designed to be loaded on Linux

5.13.0-40-generic. So I created a new VM with Ubuntu 20.04.1 running on it and installed the matching

kernel version. (I wasn’t able to do so with my usual VM running Ubuntu 21.02 because the relevant

version didn’t show up in my apt-cache. There’s probably some way to do it, I just don’t know my way

around Unix very well.)

This allowed me to load the kernel module with no complaints.

But what does it actually do?

Looking again at the strings found in IDA, I noticed “N3tf1lt3r”. This turned out to be a hint towards

netfilters, which are kernel modules (!). So I started looking at some articles about writing your own

netfilters in the hopes of understanding what the module was doing.

In init_module(), which is called when the module is loaded, hook_func() is registered as the packet

filter function. Here we see that the function is registered to capture IPv4 packets.

Let’s take a look at hook_func():

As it turns out, for some reason, IDA mis-identifies the end of hook_func() as coming right after the

first instruction. This is not actually the case, as we can see in linear view:

After some effort reverse-engineering the whole function, I concluded that the packet filter roughly

behaves in a manner similar to the pseudocode below:

As we can see above, once all 5 hashes have been matched, sending a 6th ICMP packet containing any

two-byte payload will cause the program to print us the flag.

I wrote a simple script to brute-force the expected inputs:

And all that’s actually left to do is send the relevant packets to localhost.

First, I tried using sendip, but that crashed my VM every time I tried to send a packet with it while the

kernel module was running.

Then I decided to do it the old-fashioned way with ping. This worked and the flag popped out in dmesg:

5A. Morbed, Morphed, Morbed [TISC{P0lyM0rph15m_r3m1nd5_m3_0f_M0rb1us_7359430}]

Upon running the program, it printed out what looked like a hash, followed by an error. That’s

strange.

The program seems to have been written in Rust, which I have never read or written a single line of

in my life. So I decided to start by investigating the main function in IDA, and… oh.

There were also tons of irrelevant instructions which seemed to only exist to waste my time:

Luckily, these were pretty well-telegraphed, always sandwiched between a push and a pop instruction,

and it was easy to hide them once I identified them.

Furthermore, I found this in the function list, which was slightly worrying:

I googled “rust polymorphic”, but all I got was results about polymorphism (the OOP concept). So that

wasn’t particularly useful.

I actually did make a (hopefully) respectable effort to understand the assembly manually. I knew that

it read its own contents into a buffer, deleted its original file, computed its md5 hash, and then… I got

to around where the red arrow was before I stopped understanding what was going on. I wasted 3

days staring at this stuff, so I hope you’re happy. (In hindsight, I probably should have started by running

strings on the binary.)

Luckily, I eventually noticed something strange here:

Here at the end of the block I was trying and failing to comprehend, were lots of offsets being loaded,

probably for purposes of printing an error message if something went wrong. However, all of these

offsets pointed to the same string, “src/metamorphic.rs”.

Was I googling the wrong thing?

Googling “rust metamorphic” turned up this (https://github.com/mmore21/dolos/tree/master/src).

After taking a peek at engine.rs, I noticed a great deal of parallels between the source code and the

assembly and what I was looking at.

Hmm…

https://github.com/mmore21/dolos/tree/master/src

Suddenly everything made sense. This section of the code that I didn’t understand was actually an

inlined function call to metamorph(). With this insight, I was able to roughly guess what the program’s

code was doing at a high level – it was rerolling the useless instructions within the push/pop segments

and attempting to overwrite its own binary file. This roughly matches the behaviour described here:

https://stackoverflow.com/questions/10113254/metamorphic-code-examples

This was confirmed when I ran the program multiple times and noted that the hash changed each time:

Next, I decided to investigate where the error was being thrown. As it turns out, the program ran into

an issue here:

https://stackoverflow.com/questions/10113254/metamorphic-code-examples

A call to mmap(), then a memmove() followed by “call rbx”? It looks like the program is dynamically

writing code into some memory region and then jumping to it. On a hunch, I tried running the program

with elevated privileges instead (admittedly, not a good idea for a CTF challenge binary). This worked

for some reason, but more importantly it confirmed my theory:

I set a breakpoint here and dumped the payload in the buffer for further (manual) analysis. I will

summarise the obvious findings first – this new section of code:

1. Reads up to 50 bytes of user input, and writes it to a buffer.

2. For each character in the user input, check if it’s in the range 0-9a-zA-Z[\]^_`{|}. If yes, XOR it

with 0x2f and update the buffer accordingly.

3. Checks whether the first 38 bytes are equal to some hardcoded value in the program. This

hardcoded value turns out to be the string “TISC{th1s_1s_n0t_th3_ac7u4l_fl4g_lM40}” with

every byte XOR’d with 0x2f.

4. If this check does not pass, the program immediately terminates.

I immediately tried this to see what would happen:

Unfortunately, I would have to keep at it for a bit longer. Continuing from where I left off:

5. If the string check does pass, the program constructs a 16-byte array dependent on four

particular bytes in the user input buffer at hardcoded offsets (+13, +15, +40, +46). Note that

since the fake flag is 38 characters long, the first two bytes are thus fixed. We can control the

other two bytes, though.

6. This byte array, along with some hardcoded values in a buffer (call this buf2) gets passed into…

whatever this function is:

7. The program prints the contents of buf2 and terminates.

This final function call was pretty painful to deal with, because it involved heavy use of misaligned

instructions and confused the online linear disassembler that I had been using to convert the bytecode

back into “readable” assembly. I was too lazy to find a better solution, so I manually stepped through

this section instruction by instruction in GDB to recover the actual instructions being executed:

As can be seen in the above image, the most glaring anomaly in this function was the suspicious magic

constant 0x9e3779b9, which turned out to be a key-scheduling constant in the Tiny Encryption

Algorithm (TEA) and its derivatives.

A cursory inspection of the code as well as some cross-comparison with sample source codes of TEA,

XTEA and XXTEA from Wikipedia eventually revealed that this mangled function was the decryption

subroutine of XTEA – buf2 contained the ciphertext, and the 16-byte array that was partially

dependent on our user input was used as the key.

So I wrote a simple script to try out all possible combinations of those 2 bytes. (Note that I only tried

up to 127, because sign-extensions was performed at a few points in the construction of the key, and

I was hoping that I could get away with being lazy and not implementing the relevant logic in my script.)

One of the output lines was significantly shorter than the rest, because it only contained printable

characters. This turned out to be the flag.

6. Pwnlindrome [TISC{ov3rFL0w_4T_1Ts_fIn3sT}]

Get-Schwifty, 2022 edition.

When the program initialises, two memory regions of size 0x1000 are malloc’d, and they are adjacent

to each other in memory. Let’s call them level1_malloc and level3_malloc.

Level 1

The program asks for a seed, and 16 integers. The program then writes the nth integer (zero-indexed)

to level1_malloc + 0xf7 + n*0x100 + (rand() % 0x100) + 1. Note that depending on the random number

we obtain, the last integer might be written beyond the bounds of level1_malloc and into

level3_malloc.

Level 2

Oh no. Not this again.

This time, however, the program works quite differently. As is always, a linked list is created to store

our nodes, with the head node being a fixed location in global data.

However, instead of allocating a new memory region to store the contents of each node, there is one

master allocation (level2_master_alloc) of size 0x10000 which is created each time level 2 is re-entered

(old ones are never freed, but this fact isn’t useful). This master allocation is divided into regions, and

attempting to create a new node returns a pointer into the corresponding region depending on the

size of the node, as shown below:

The level 2 program logic contains multiple vulnerabilities, but only one is of interest. I will explain it

later.

Level 3

This level is only accessible if we overflow input from level 1 into level3_alloc in a certain way, which

is checked at the start of the function call.

If the initial checks are passed, we are asked to input a message “to be left for the next challenger”,

then exits. (Note: this is not actually the case. I was mildly disappointed.)

The goal

An examination of the disassembly in level 3 reveals this:

So the program reads our input into a buffer located on the stack, and if we could overflow it

appropriately, we could gain control over program flow. However, in order to know what to write here,

we would still need to defeat ASLR…

Part 1

The first step is to use level 2 to leak a pointer to global data. The first observation is here, in a function

that takes in a node’s size and returns a pointer to its offset within level2_master_alloc:

The first time a node of that particular bucket size is declared, the address of the variable in global

data that keeps track of the number of allocations in that bucket is also written to level2_alloc. This

serves no purpose for the program’s normal execution, but is extremely useful for us.

But how do we actually read this information? The location of this variable is always slightly out of

reach of the last possible allocation of the previous bucket size, so we make another observation:

The program also provides us with the functionality to modify a node, and this includes the node’s size.

If we increased the size of the node buffer, we would be able to read from larger region, while the

buffer itself is not relocated, even if the new size would make it fall into a different bucket.

(As noted in the comment in the above screenshot, this also messes up the “delete node” function,

but it’s not relevant to my method of attack.)

So I performed the following sequence of actions:

1. Create node 1 of size 1. This places it in the first bucket, at level2_alloc + 0x20.

2. Modify node 1 to have size 0x1000. It remains at level2_alloc + 0x20, but allows us to read up

to 0x1000 bytes (although this terminates at the first null byte encountered). Then we fill the

first 0x150 bytes of node 1 with “A”.

3. Create node 2 of size 16. This places it in the second bucket, at level2_alloc + 0x180. Since this

is the first allocation corresponding to the second bucket, the program moves a global data

pointer into level2_alloc + 0x170.

4. Print the contents of node 1’s buffer. We will obtain something like this:

This address corresponds to this variable in global data:

So we can calculate the base address of the executable and defeat ASLR.

Part 2

To exploit level 3, we must first pass the check at the start of the function. In summary, the program

reads *(int*)level3_alloc, and checks whether: a) it is greater than 10 (signed comparison), b) its square

is even, and c) it is a Fibonacci number.

Then we actually need to write this integer to the start of level3_alloc (as it is 0 by default due to a

memset). This happens to be level1_alloc + 0xf7 + 15*0x100 + 0x18 + 1, so we need the 16th call of

rand()%256 to return 0x18. I wrote a simple script to brute force some possible seeds:

Using 180 as the seed and 34 as the integer passed the check. Now let’s examine the rest of level 3.

First, the program asks us to provide it with a message length. This is capped at 0x28, but is a signed

comparison:

Then it truncates the integer to a signed short and uses that as the actual length for cin() instead:

This makes it relatively easy to overflow our message into the next buffer; I used size = 0x80001000.

Finally, near the end of the function, the function iterates through our entire message up to the first

null byte, and replaces each byte x with (x + d) XOR d, where d = *(int*)level3_alloc (34, in our case).

We can deal with this by simply applying the inverse transformation to our payload.

This is the whole exploit summed up:

7. Challendar [TISC{Y0uR_D4yS_ArE_nuMb3reD_34cc2686}]

What a disaster

I don’t think I will be able to solve this one and I kind of lost motivation after seeing everyone get stuck

for about a week so in the meantime I will just detail what I tried.

Attempt 1

We are provided with backup.zip, which appears to be an archive of someone’s Mozilla Thunderbird

profile. In particular, logins.json contains some interesting information:

After a bit of tinkering around I decided that the most straightforward way to decrypt the stored

passwords was simply to transplant logins.json and key4.db into my existing Firefox profile folder in

my Kali VM. This worked, and I recovered the stored login credentials (which are the same for both

servers):

Let’s check out both servers:

So we conclude that the we can reach a (presumably old) Radicale server on port 37179 and the new

server on port 35128. This is corroborated by the behaviour described in the provided source code for

the new server:

After much fumbling around, I discovered that I could still connect to the old Radicale server using

cadaver, which allowed me to do some directory enumeration:

At around this time, the first hint released, revealing the configuration file for the nginx reverse proxy

on port 37179. This explained why I was unable to GET the file.

I guessed that both the old and the new server were operating on the same backing storage, so I tried

accessing it through the new one instead:

Going off of the source code of the new server, it appeared that we were able to send PUT requests to

the server. I decided to confirm this with a funny payload I stole from a recent Greyhats CTF:

Then I tried to upload a PHP file, as seems to be the general idea for the few WebDAV related CTF

writeups I could find online. Sadly, this didn’t work because the new server wasn’t parsing the PHP

even though I could request the file.

Then I tried a bunch of alternative webshells, such as .cgi, but none of them worked either.

At this point I decided to do some port scans.

I spent some time mucking around the other open ports, and then I started having my suspicions that

I wasn’t supposed to do this. So I emailed the organisers just to double check and…

Oops. Let’s not work on this then.

Attempt 2

At some point a second hint was released:

Skip over this next bit if you don’t want to read the deranged ramblings of someone with no web

knowledge grasping at straws for a week. In hindsight, I kind of knew that most of these “ideas”

wouldn’t work (since that’s not how servers work), but I was out of ideas so I just tried random stuff

while convincing myself that they had a chance of succeeding.

The short version is that I convinced myself that I had to exploit the nginx reverse proxy somehow.

Idea 1

Although there is no PHP parser on the new server, I wanted to find out whether the reverse proxy

was able to parse PHP for me. I decided to try and trick it into parsing PHP returned by Radicale, so I

attempted to leverage the REPORT method to dump the contents of the target resource:

Unfortunately, as it turned out, Radicale sanitizes the relevant special characters first to prevent it from

interfering with the XML format:

Idea 2

Then I started looking into where the calendar properties were actually stored. Based off of Radicale’s

source code and documentation, all file properties were dynamically calculated from file metadata (e.g.

SHA256 hash, last modified time, etc), whereas on top of these, custom directory (collection)

properties could also be loaded from a hidden file, .Radicale.props, located in said directory.

I manually verified that this was indeed the case. Here’s the file that stores properties for the

jrarj/default/ collection:

I could trivially control the contents of this file by simply overwriting it with a PUT request via the new

server. Furthermore, it turned out that I could use this to control some of the contents returned by a

PROPFIND request performed on a directory via the old server. This is because while Radicale does

sanitize the value strings stored in the properties file, it doesn’t do the same for the keys:

Unfortunately, as can be seen here, the PHP payload once again goes uninterpreted. I experimented

for a while with renaming default/ to default.php/ to trick the reverse proxy into thinking that I had

requested a PHP file when I performed a “PROPFIND /radicale/jrarj/default.php” (note the lack of

trailing slash) request, but I wasn’t able to get this to work.

Idea 3

I looked into the format of WebDAV-specific HTTP methods and found that they were all specified in

XML. If the XML was being parsed, perhaps I might be able to perform an XXE attack?

After some experimentation and staring at the source code for the libraries used in both Radicale and

the new custom server, however, I concluded that this was probably not possible. Radicale uses the

defusedxml Python library, which is specifically designed to block most XML attacks. On the other hand,

the Golang XML parser consumes DOCTYPE and ENTITY declarations, but… doesn’t actually do

anything further with them. Stray & symbols in the XML that aren’t already recognised as part of

special characters simply cause the server to return a 400 Bad Request, and parameterized XML

entities (which start with %) aren’t even checked for.

Also, this idea doesn’t quite leverage on the whole idea of “using one server to exploit the other”, so I

figured it probably wasn’t related to the intended solution.

Verdict

I am interested in finding out how close or far away I was from the intended solution. I feel like it’s

probably the latter.

I tried convincing myself that I had given up and already done respectably, but the problem remained

in the back of my mind. Over the next week I would “occasionally” (read: whenever I had free time)

go back and stare at the Radicale source code, but I couldn’t find anything new.

Then, 8 whole days after I started attempting this level, I saw it, in a section of the source code I never

bothered checking out because I tunnel-visioned too hard. A Python deserialization vulnerability.

https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/st

orage/multifilesystem/sync.py#L35

As you can see here, when a request is made to sync collections, Radicale goes looking in

the .Radicale.cache/sync-token/ subdirectory of the target collection for a cached token state, which

is serialised with pickle. So what if I planted a serialised object like this? (Reverse shell command stolen

off reference websites online)

https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/storage/multifilesystem/sync.py#L35
https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/storage/multifilesystem/sync.py#L35

But in order to get Radicale to actually find and deserialise this malicious payload, I needed to plant it

in the right location on the new server, at /jrarj/default/.Radicale.cache/sync-

token/(valid_token_name). This is not as straightforward as it sounds, because we can’t create new

directories on the server, and while Radicale does create the relevant directories for us when it receives

a legitimate sync request, we can’t access it anyways as the server returns 403 – it’s too deep in.

However, we can copy and move directories around, so we can “simulate” creating a directory by

copying an existing one, purging its contents, and moving it. We can also copy directories into other

directories to bypass the traversal depth restriction imposed by the server. So I did this:

Then I tricked the server at 37179 into deserialising my planted payload:

…and caught a reverse shell with ngrok.

8. PALINDROME Vault [TISC{I_4m_b3tT3r_tH4n_M1ch431_sc0F13lD_eed49e44d99fd61007a80af6a777af41a1c4f0a8}]

Connecting to the provided server leaves us at a shell… of sorts. It doesn’t seem to print anything, and

randomly boots you if it doesn’t like what you entered.

Occasionally, it would print something different, too, before cutting the connection:

Eventually, I discovered that “input” was an acceptable term for the shell. This got me wondering if I

was communicating with a Python interpreter:

As it turns out, it was! Furthermore, while “=” was blacklisted so I couldn’t declare variables, I could

still set them anyway by calling internal Python methods.

Let’s check out what all the variables are:

“bl” looks like a blacklist, so I simply set it to an empty tuple and managed to spawn myself a shell:

I copied main.exe, helloffi.dll and qq.enc to my machine for further investigation. As it turns out,

main.exe was a Golang binary which eventually called an exposed function in helloffi.dll (which was

written in Rust). The source for the Golang binary was provided in a hint, although it didn’t serve much

purpose other than confirming my findings.

When running the program a couple of times just to find out what it did, I noticed that I always passed

the first check. This was a long sequence of successive comparisons:

However, after parsing these conditional statements in Python to get the possible range of the value

returned by the function, it turned out that due to how the random number ranges are set, this

function only ever returns the correct value, 951 – this is because we always have 540 <= sum of 5

numbers < 1049, and there are no conditional checks for any integers within this region.

So I assumed this was a waste of time and moved on.

Then I started looking at helloffi.dll. A string gets passed into it from the binary, and then… ?????

After staring at the subroutine on the right (which is called near the start of the hello() function on the

left) for several hours, I made an educated guess that it was probably some kind of UTF-8 parser. This

is because this lookup array looked an awful lot like it converted the value of the first byte of a UTF-8

character into its total length in bytes…

Going back to hello() with this insight, it suddenly became a lot less intimidating. Most of the similar-

looking blocks in the main function body are really just unnecessarily replicated code segments for

converting a sequence of bytes into their corresponding code-point representation, as seen here:

And some previously inscrutable functions turned out to be serving incredibly simple purposes:

After a few hours of static analysis (I didn’t want to have to pick up dynamic analysis, especially for

Rust and/or dlls, although I’m not sure it would have been useful anyways), I gathered the following

constraints on the input:

Additionally, the function checks at the very beginning whether our input is 9 UTF-8 characters long.

This was strange, because I had only gathered constraints on 8 inputs, and they looked parameterized…

I wrote a little script in Python to brute-force possible values for v1 which returned valid values for the

remaining code-points, but there were too many of them… and most of them looked like this:

I remembered from earlier in level 5A that Rust seemed to like dealing with UTF-8 strings, even if the

input was really just ASCII. Working on a hunch, I filtered out only those strings that contained printable

ASCII characters:

This returned just two results, “Art1st!!” and “Asu1st!!”.

At this point, I was a bit stumped. Why were there two solutions? And why was the program expecting

9 characters but only giving me constraints for 8 of them? Was it erroneously making room for a null

terminating or newline character as a by-product of reading from stdin which, as far as I could tell from

my testing, wasn’t actually getting passed to it? Or was I expected to brute force this final character?

8 bytes is a nice key length, and it seemed weird to have a 9th one.

Furthermore, I still didn’t know what algorithm was used to encrypt the file provided, and testing out

both solutions with various decryption routines available on CyberChef either returned garbage, or

just flat out didn’t work.

So I asked if this was intentional:

Hmm… maybe there was more to that first part than I initially assumed. But how would they hide part

of the key in here?

Looking at the conditionals again, I noticed that they were conveniently grouped into chunks of 8. If I

was looking for some kind of ASCII string, maybe the individual bits themselves were encoded within

whether the conditional returned true or false?

Since printable characters always have a most significant bit of 0, I scrolled up and down checking for

the first conditional of each chunk. Sure enough, all of them checked whether the sum was less than

(some value smaller than 540), which was always false.

So I wrote a Python script to test my hypothesis:

So the key I was looking for was probably “key{th3_gR34t_E5c4p3_Art1st!!}” (with the last character

inferred presumably meant to be inferred; the organisers hinted to me that that was what it should

have been). But what encryption algorithm was being used?

First, I stole a script from online which exhaustively ran the password and encrypted file through all

possible cipher decryption routines available in OpenSSL. This didn’t return anything useful.

Then I looked at the encrypted file in a hex editor and noticed something odd:

Here at the end of the file, a fragment of the key had appeared. Even further on, at exactly one key-

length away from this, was something else that looked suspiciously similar to, but wasn’t quite, the

start of the key.

Could it be a simple XOR with a repeating keyword?

I dumped the file into CyberChef with the key and sure enough, an archive fell out.

The only file inside the archive was this rather oversized QR code:

Scanning the QR code with my phone got me rickrolled. But more importantly, a simple video link like

that shouldn’t require such a large QR code. Surely there was something else being hidden inside?

I tried using an online decoder to dump the raw bytes being encoded in the QR code, but my first

attempt didn’t work. Looking again, this was probably because the image’s colours were actually

inverted.

So I inverted the colours a second time and ran it through the QR decoder at

https://zxing.org/w/decode.jspx:

https://zxing.org/w/decode.jspx

And there it is.

9. PalindromeOS

>android

I was expecting there to be an Android challenge, but oh well.

I briefly considered giving it a shot but decided it wasn’t worth the effort given the remaining time I

had left when I couldn’t even figure out how to get the kernel image running on an AVD. I have zero

Android knowledge so it would probably be better for me to follow along with someone else’s writeup

so that I can at least get the fundamentals down for the next time.

Evaluation

At the end of the day, I’m fairly happy with my performance. Some thoughts:

• I could have had way more time to attempt the last few challenges if I hadn’t wasted a whole

week on level 7, and that could really have boosted my chances and motivation to continue

further on. But the fact that I didn’t give up and ultimately managed to come back and solve

it is something I’m pretty pleased about.

• I had a lot less time to dedicate to the competition this year, given the return of in-person

classes and the fact that this year’s TISC occurred near the start of the semester, coinciding

almost exactly with the release of many Project 1’s and Assignment 1’s from my various

modules which I had to juggle. Even factoring this (and the massive time-sink level 7 was for

me) into account, I was still able to do fairly well, so I would like to think my CTF skills have

improved slightly.

• There is still lots of room for improvement!

o The biggest issue I noticed this year is that I tend to work hard, not smart. I went down

many rabbit holes and would often persist on doing things the slow and tedious way

(e.g. manually reversing level 5 for a few days…) instead of looking for alternative

methods right off the bat. This made some of my solves take significantly longer than

I guess they should have.

o I need to learn useful tools such as Angr (although I’m not sure how useful they would

have been in against this year’s RE challenges), as well as eventually overcome my

phobia of Android challenges.

• I should probably participate in more entry/intermediate-level CTFs for fun just to keep myself

sharp. In between last year’s and this year’s competition I really only played the Greyhats

WelcomeCTF to snag some freebies, so I guess I could have really gained a lot more experience

if I had made more of an effort to do so.

Conclusion

Thank you to CSIT, for organising this competition. Every year, my life gets taken over, my sanity dips

and my stress levels spike for two weeks as I ponder how to solve the seemingly impossible challenges

thrown at me. But I learn a lot of cool tricks every year, so it’s alright.

