2022 Transactions on Bad Crypto Page 10f 3

2 Way Key Verify:
An Ultra-Lightweight Authentication Scheme

B.RY.X.! J.F. HO', R. Balaji'

' Palindrome Research Labs, Singapore

1. Introduction

With the roll out of IOT devices in PALINDROME's botnet infrastructure and
the need for fast and secure authentication has led to us developing a
simple yet powerful method for 2 way proof of knowledge based key
verification. In this paper, Palindrome Research Labs details the 2WKV
scheme.

2. Key Generat|on) Key Generation

‘ Generate 64 bit secure random key ‘

2WKV operates on the basis of
symmetric key cryptography. A 64 bit
key must be securely generated and
distributed to both endpoints before
the algorithm can perform any
verification. This 64 bit key represents
the 8x8 binary matrix that will be used
to perform mathematical operations '/ \'

in GF(2) during the Key Verification Server Client
procedures.

. v .
‘ Format as 8 x 8 binary matrix ‘

v
Dlstnbuted as Symmetric Key

‘ SECRET_KEY ‘ SECRET_KEY ‘

3. Key Verification

To verify the knowledge of the key without revealing the key to the other
party, this scheme uses matrix multiplication in GF(2) as its proof of
knowledge function.

2022 Transactions on Bad Crypto Page 2 of 3

Formally we can define a challenge and response vectors as having this
relationship with the SECRET_KEY matrix:

| SECRET,, SECRET,, - SECRET,,| | challenge, 1 T response,
SECRET,; SECRET,, -+ SECRET,, challenge, response;
X =
| SECRET,;, SECRET,, - SECRET,, | | challenge, | | response, |

Do take note that all of these operations happen in GF(2).

4. Typical Use Case

Client Server

Here we detail an example of
the typical use case for our
2WKV SCheme There ShOUld Server will allow Client to send it 8x1
., . challenge vectors to prove its knowledge
be 2 phases of verification so of the SECRET_KEY.

that both the server and
client can bidirectionally
verify each other. In the event
that either side receives an
incorrect response vector to
its Cha”enge vector, that side Disconnect - Authentication Failure
should immediately stop

communications.

Establish Connection

v

"Challenge Me!" Phase

alt [if response from Server incorrect]

»
>

Client will prove its knowledge of the
SECRET_KEY by multiplying out 8x1
challenge vectors from the Server.

If successful authentication is
possible, both clients can
begin secure data exchange.

"Challenge You!" Phase

|n the next page we a|SO alt [if response from Client incorrect]
prOVide a real sample of an Disconnect - Authentication Failure
implementation we use in our i

live production infrastructure. Authenticated Successfully

A

Secure Communications

viv

AlA

Client Server

2022 Transactions on Bad Crypto Page 30of 3
6 .7 Q files — bat niain.py — bat — Ieés < bat main.py — 873x80

File: main.py
Size: 2.7 KB

import sys
import numpy as np

L s+: :

P8 +i1+ 4o+ TPBa

+#+ i+ i AH

+#+ +H+H#+ H# +#+

#+#+# H#H+#+# H+# #+#
HAHHBHHHRH ### #H##

O t+: : o
+i+ i+ i+ +i+ 4+

L4 . . .
sannerstring RS
#H## HHH# HEBHBHHHHRHR #H##

L HL L L H Rar8 o

+:+ +i14+ +1+ +:+ s +:+

+#+ +i+ +H++IH+# +H++ i+ +#+

+#+ +#+ +H#+ +#+ +#+ +#+

#+#+#+# #+# #+# #+# #+#
#i## ###H#HHBHE HHH# ### HHRBHBHBHBH HHH

def sysout(fstr):
sys.stdout.write(fstr)
sys.stdout.flush()

def prompt(fstr):

. guards = "=" x len(fstr)
Helper & Wln sysout(f"{guards}\n{fstr}\n{guards}\n")
def vectostr(v):

Fu nCtionS return "".join(map(str, v.reshape(-1)))

def strtovec(s, rows=8, cols=1):
return np.fromiter(list(s), dtype="int").reshape(rows, cols)

def win():
flag = open("/flag.txt").read().strip()

SECRET KEY prompt(f"Here is your flag: {flag}")

SECRET_KEY = np.round(np.random.rand(8, 8)).astype("int")

(Symmetric)

sysout(banner)

prompt("Challenge Me!")

for i in range(8):
input_vec = input(f"Challenge Me #{i+1:02} <—- ")
assert len(input_vec) == 8
assert input_vec.count("1") + input_vec.count("@") == 8
input_vec = strtovec(input_vec)
output_vec (SECRET_KEY (@ input_vec) & 1
sysout(f"My Response --> {vectostr(output_vec)}\n")

prompt("Challenge You!")
for i in range(8):
. input_vec = np.round(np.random.rand(8, 1)).astype("int")
Se rver % Cllent sysout(f"Challenge You #{i+1:02} —--> {vectostr(input_vec)}\n")
test_vec = input(f"Your Response <-- ")
assert len(test_vec) == 8

Challenges assert test_vec.count("1") + test_vec.count("e") == 8
test_vec = strtovec(test_vec)
answer_vec (SECRET_KEY (@ input_vec) & 1
assert (answer_vec == test_vec).all()

Authenticated!

